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Preliminaries
Conventions

▶ The number and page numbers assigned to chapters, examples, exercises, figures, quotes,
sections and theorems on these slides correspond to the numbers assigned in the
textbook [Hopcroft, Motwani and Ullman (1979) 2007].

▶ The natural numbers include the zero, that is, ℕ = {0, 1, 2, … }.
▶ The power set of a set 𝐴, that is, the set of its subsets, is denoted by 𝒫𝐴.
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Formal Languages: Origins
Source areas [Greibach 1981, p. 14]

▶ Logic and recursive-function theory
▶ Switching circuit theory and logic design
▶ Modelling of biological systems (brain activity)
▶ Mathematical and computation linguistics
▶ Computer programming and the design of Algol and other problem-oriented languages
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Finite Automata
Example (Modeling an on/off switch)

onstart off
push

push

Example (Recognising the word ‘then’)

start t th the thent h e n
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The Wolf, the Goat and the Cabbage Problem

‘A man with a wolf, goat, and cabbage is on the left
bank of a river. There is a boat large enough to carry the
man and only one of the other three. The man and his
entourage wish to cross to the right bank, and the man
can ferry each across, one at a time. However, if the man
leaves the wolf and goat unattended on either shore, the
wolf will surely eat the goat. Similarly, if the goat and cab-
bage are left unattended, the goat will eat the cabbage. Is
it possible to cross the river without the goat or cabbage
being eaten?’ [Hopcroft and Ullman 1979, p. 14] †

†The illustration is from the cover of [Levitin 2003].
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The Wolf, the Goat and the Cabbage Problem
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The Wolf, the Goat and the Cabbage Problem
Solution
In the previous automaton we can see two solutions:†

(i) 🐐, 👨, 🐺, 🐐, 🌶, 👨, 🐐.
(ii) 🐐, 👨, 🌶, 🐐, 🐺, 👨, 🐐.

†I used figures following a Haskell solution in https://iokasimov.github.io/posts/2020/08/wgc-effects .
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Finite Automata
Description

‘The finite automaton is a mathematical model of a system, with discrete inputs and
outputs. The system can be in any one of a finite number of internal configurations or
“states”. The state of the system summarizes the information concerning past inputs
that is needed to determine the behaviour the system on subsequent inputs.’ [Hopcroft
and Ullman 1979, p. 13]
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Deterministic Finite Automata
Definition
A deterministic finite automaton (DFA) is a 5-tuple

(𝑄, Σ, 𝛿, 𝑞0, 𝐹 ),

where
(i) 𝑄 is the finite set of states,
(ii) Σ is the alphabet of input symbols,
(iii) 𝛿 ∶ 𝑄 × Σ → 𝑄 is the transition function,
(iv) 𝑞0 ∈ 𝑄 is the start state,
(v) 𝐹 ⊆ 𝑄 is the set of accepting (or final) states.
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DFA Representations

DFAs can be represented of various equivalent ways:
(i) Transition diagram
(ii) Transition table
(iii) Detailed description
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Transition Diagram
Example
Let Σ = {0, 1}. The following transition diagram represents a DFA that accepts the language
𝐿 = { 𝑥01𝑦 ∈ Σ∗ ∣ 𝑥, 𝑦 ∈ Σ∗ }.

𝑞0start 𝑞1 𝑞2
0

1

1

0 0, 1

▶ 𝑞0: The automaton has never seen 01, but its last input was either nonexistent or it last
saw a 1.

▶ 𝑞1: The automaton has never seen 01, but its most recent input was 0.
▶ 𝑞2: The automaton has already seen 01.

Processing the input 0101: 𝛿(𝑞0, 0) = …
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Transition Tables and Detailed Descriptions
Example

(i) Transition diagram

𝑞0start 𝑞1 𝑞2
0

1

1

0 0, 1

(ii) Transition table
0 1

→ 𝑞0 𝑞1 𝑞0
𝑞1 𝑞1 𝑞2

∗𝑞2 𝑞2 𝑞2

(iii) Detailed description

𝑄 = {𝑞0, 𝑞1, 𝑞2},
Σ = {0, 1},

𝛿(𝑞0, 0) = 𝛿(𝑞1, 0) = 𝑞1,
𝛿(𝑞0, 1) = 𝑞0,
𝛿(𝑞1, 1) = 𝛿(𝑞2, 0) = 𝛿(𝑞2, 1) = 𝑞2,

𝑞0 start state,
𝐹 = {𝑞2}.
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Extension of the Transition Function for DFAs
Definition
Let 𝐷 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 ) be a DFA. The extension of the transition function, denoted by ̂𝛿,
is recursively defined by

̂𝛿 ∶ 𝑄 × Σ∗ → 𝑄
̂𝛿(𝑞, 𝜀) = 𝑞,

̂𝛿(𝑞, 𝑥𝑎) = 𝛿( ̂𝛿(𝑞, 𝑥), 𝑎).
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Extension of the Transition Function for DFAs
Example

𝑞0start 𝑞1 𝑞2
0

1

1

0 0, 1

̂𝛿(𝑞0, 010) = ̂𝛿(𝑞0, 𝜀010)
= 𝛿( ̂𝛿(𝑞0, 𝜀01), 0)
= 𝛿(𝛿( ̂𝛿(𝑞0, 𝜀0), 1, ), 0)
= 𝛿(𝛿(𝛿( ̂𝛿(𝑞0, 𝜀), 0), 1, ), 0)
= 𝛿(𝛿(𝛿(𝑞0, 0), 1, ), 0)
= 𝛿(𝛿(𝑞1, 1, ), 0)
= 𝛿(𝑞2, 0)
= 𝑞2
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Extension of the Transition Function for DFAs
Exercise 2.2.2
Prove that ̂𝛿(𝑞, 𝑥𝑦) = ̂𝛿( ̂𝛿(𝑞, 𝑥), 𝑦) for any state 𝑞 and strings 𝑥 and 𝑦. (Hint: Perform induction
on 𝑦).

Proof by induction on 𝑦
▶ Basis step (𝑦 = 𝜀)

̂𝛿( ̂𝛿(𝑞, 𝑥), 𝜀) = ̂𝛿(𝑞, 𝑥) (def. of ̂𝛿)
= ̂𝛿(𝑞, 𝑥𝜀) (def. of concatenation)
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Extension of the Transition Function for DFAs
Proof (continuation)

▶ Inductive step (𝑦 = 𝑤𝑎)

̂𝛿(𝑞, 𝑥 · 𝑤𝑎) = 𝛿( ̂𝛿(𝑞, 𝑥𝑤), 𝑎) (def. of ̂𝛿 and concatenation)
= 𝛿( ̂𝛿( ̂𝛿(𝑞, 𝑥), 𝑤), 𝑎) (IH)
= ̂𝛿( ̂𝛿(𝑞, 𝑥), 𝑤𝑎) (def. of ̂𝛿)
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Extension of the Transition Function for DFAs
Exercise 2.2.7
Let 𝐷 be a DFA and 𝑞 a particular state of 𝐷, such that 𝛿(𝑞, 𝑎) = 𝑞 for all input symbols 𝑎.
Show by induction on the input that for all input strings 𝑤, ̂𝛿(𝑞, 𝑤) = 𝑞.

Proof by induction on 𝑤
▶ Basis step (𝑤 = 𝜀)

̂𝛿(𝑞, 𝜀) = 𝑞 (def. of ̂𝛿)

▶ Inductive step (𝑤 = 𝑥𝑎)

̂𝛿(𝑞, 𝑥𝑎) = 𝛿( ̂𝛿(𝑞, 𝑥), 𝑎) (def. of ̂𝛿)
= 𝛿(𝑞, 𝑎) (IH)
= 𝑞 (hypothesis)
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Languages accepted by DFAs
Definitions
Let 𝐷 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 ) be a DFA and let 𝑤 ∈ Σ∗ be a string.
(i) The string 𝑤 is accepted by 𝐷 iff ̂𝛿(𝑞0, 𝑤) ∈ 𝐹 .

(ii) The string 𝑤 is rejected by 𝐷 iff ̂𝛿(𝑞0, 𝑤) ∉ 𝐹 .
(iii) The language accepted by 𝐷, denoted L(𝐷), is the set of strings accepted by 𝐷, that is,

L(𝐷) ≔ { 𝑤 ∈ Σ∗ ∣ ̂𝛿(𝑞0, 𝑤) ∈ 𝐹 }.
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Regular Languages
Definition
A language 𝐿 is regular iff exists a DFA 𝐷 such that 𝐿 = L(𝐷).
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Regular Languages
Example
Let 𝐿 be the set of words with both an even number of 0’s and an even number of 1’s. 𝐿 is a
regular language.

▶ 𝑞0: Both the number of 0’s seen so far and the
number of 1’s seen so far are even.

▶ 𝑞1: The number of 0’s seen so far is even, but
the number of 1’s seen so far is odd.

▶ 𝑞2: The number of 1’s seen so far is even, but
the number of 0’s seen so far is odd.

▶ 𝑞3: Both the number of 0’s seen so far and the
number of 1’s seen so far are odd.

𝑞0

start

𝑞1

𝑞2 𝑞3

1

0
1

00
1

0

1
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1
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1

0

1
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Regular Languages
Question
Let Σ be an alphabet. Is ∅ a regular language?

What about Σ∗?
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Representation of DFAs
Functional Program Representation
(Adapted from [Keller 2001])

▶ Each state of the automaton is identified with a function from Σ∗ to a truth value.
▶ The initial state is identified with the overall function of the automaton.

Example
See the implementation for the representation functional of a DFA in the course homepage.
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