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Preliminaries
Conventions

▶ The number and page numbers assigned to chapters, examples, exercises, figures, quotes,
sections and theorems on these slides correspond to the numbers assigned in the
textbook [Hopcroft, Motwani and Ullman (1979) 2007].

▶ The natural numbers include the zero, that is, ℕ = {0, 1, 2, … }.
▶ The power set of a set 𝐴, that is, the set of its subsets, is denoted by 𝒫𝐴.
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Introduction

Let 𝐿 and 𝐿′ be regular languages. The following languages are regular:

𝐿 ∪ 𝐿′ (union)
𝐿 ∩ 𝐿′ (intersection)
𝐿 (complement)
𝐿 − 𝐿′ (difference)
𝐿𝑅 (reversal)
𝐿∗ (closure)
𝐿 · 𝐿′ (concatenation)
ℎ(𝐿) (homomorphism)
ℎ−1(𝐿) (inverse homomorphism)
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Closure Under Union
Theorem 4.4
If 𝐿 and 𝐿′ are regular languages, then so is 𝐿 ∪ 𝐿′.

Proof
(Using regular expressions)
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Closure Under Complementation
Definition
Let 𝐿 be a language over alphabet Σ. The complement of 𝐿 is defined by

𝐿 ≔ Σ∗ − 𝐿.
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Closure Under Complementation
Theorem 4.5
If 𝐿 is a regular language, then so is 𝐿.

Proof
Let 𝐴 = (𝑄, Σ, 𝛿, 𝑞0, 𝐹 ) be a DFA that accepts 𝐿. Then 𝐵 = (𝑄, Σ, 𝛿, 𝑞0, 𝑄 − 𝐹) is a DFA that
accepts 𝐿.
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Closure Under Complementation
Question

‘Do you see how to take a regular expression and change it into one that defines the
complement language?’ [Hopcroft, Motwani and Ullman [1979] 2007, p. 136]
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Closure Under Complementation
Observation
Using the closure properties we can prove that a language is not regular.

Example
Given that

𝐿= = { 𝑤 ∈ {0, 1}∗ ∣ 𝑤 has an equal numbers of 0’s and 1’s }
is a language not regular. Prove that

𝐿≠ = { 𝑤 ∈ {0, 1}∗ ∣ 𝑤 has an unequal numbers of 0’s and 1’s }

is a language not regular.

Proof
Whiteboard.
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Product Construction
Construction
Let 𝐴𝐿, 𝐴𝑀 and 𝐴 be DFAs given by

𝐴𝐿 = (𝑄𝐿, Σ, 𝛿𝐿, 𝑞𝐿, 𝐹𝐿),
𝐴𝑀 = (𝑄𝑀 , Σ, 𝛿𝑀 , 𝑞𝑀 , 𝐹𝑀),

𝐴 = (𝑄𝐿 × 𝑄𝑀 , Σ, 𝛿, (𝑞𝐿, 𝑞𝑀), 𝐹𝐿 × 𝐹𝑀),

where

𝛿 ∶ (𝑄𝐿 × 𝑄𝑀) × Σ → 𝑄𝐿 × 𝑄𝑀
𝛿((𝑝, 𝑞), 𝑎) = (𝛿𝐿(𝑝, 𝑎), 𝛿𝑀(𝑞, 𝑎)).
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Product Construction
Theorem (Exercise 4.2.15)
For all 𝑤 ∈ Σ∗,

̂𝛿((𝑞𝐿, 𝑞𝑀), 𝑤) = ( ̂𝛿𝐿(𝑞𝐿, 𝑤), ̂𝛿𝑀(𝑞𝑀 , 𝑤)).

(continued on next slide)
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Product Construction
Proof by induction on 𝑤

1. Basis step

̂𝛿((𝑞𝐿, 𝑞𝑀), 𝜀) = (𝑞𝐿, 𝑞𝑀) (def. of ̂𝛿)
= ( ̂𝛿𝐿(𝑞𝐿, 𝜀), ̂𝛿𝑀(𝑞𝑀 , 𝜀)) (def. of ̂𝛿𝐿 and ̂𝛿𝑀)

(continued on next slide)
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Product Construction

2. Inductive step

̂𝛿((𝑞𝐿, 𝑞𝑀), 𝑥𝑎)
= 𝛿( ̂𝛿((𝑞𝐿, 𝑞𝑀), 𝑥), 𝑎) (def. of ̂𝛿)
= 𝛿(( ̂𝛿𝐿(𝑞𝐿, 𝑥), ̂𝛿𝑀(𝑞𝑀 , 𝑥)), 𝑎) (by IH)
= (𝛿𝐿( ̂𝛿𝐿(𝑞𝐿, 𝑥), 𝑎), 𝛿𝑀( ̂𝛿𝑀(𝑞𝑀 , 𝑥), 𝑎)) (def. of 𝛿)
= ( ̂𝛿𝐿(𝑞𝐿, 𝑥𝑎), ̂𝛿𝑀(𝑞𝑀 , 𝑥𝑎)) (def. of ̂𝛿𝐿 and ̂𝛿𝐿)
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Closure Under Intersection
Theorem 4.8
If 𝐿 and 𝐿′ are regular languages, then so is 𝐿 ∩ 𝐿′.

Proof
Let 𝐴𝐿 and 𝐴𝐿′ be DFAs accepting 𝐿 and 𝐿′. The product construction of 𝐴𝐿 and 𝐴𝐿′

accepts 𝐿 ∩ 𝐿′.

Different proof
The regular languages are closure under union and complement, and

𝐿 ∩ 𝐿′ = 𝐿 ∪ 𝐿′.
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Closure Under Reversal
Definition
Let 𝑤 = 𝑎1𝑎2 ⋯ 𝑎𝑛 be a word. The reversal of 𝑤 is defined by

𝑤𝑅 ≔ 𝑎𝑛𝑎𝑛−1 ⋯ 𝑎1.

Definition
Let 𝐿 be a language on alphabet Σ. The reversal of 𝐿 is defined by

𝐿𝑅 ≔ { 𝑤𝑅 ∈ Σ∗ ∣ 𝑤 ∈ 𝐿 }.

Theorem 4.11
If 𝐿 is regular language, then so is 𝐿𝑅 (proof using automata or regular expressions)
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Closure Under Reversal
Proof using automata
Let 𝐿 be recognized by a finite automaton 𝐴. From the automaton 𝐴 we get a finite automaton
for 𝐿𝑅, by

1. Reversing all arcs.
2. Make the start state of 𝐴 be the only accepting state.
3. Create a new start state 𝑝0 with transitions 𝛿(𝑝0, 𝜀) = 𝑓 , where 𝑓 ∈ 𝐹 are the accepting

states of 𝐴.
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Closure Under Reversal
Example
A NFA accepting all the binary strings that end in 01.

𝑞0start 𝑞1 𝑞2

0, 1

0 1

A NFA accepting all the binary strings that start with 10.

𝑞0 𝑞1 𝑞2 𝑝0 start

0, 1

0 1 𝜀
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Homomorphisms
Definition
An algebraic structure on a set 𝐴 ≠ ∅ is essentially a collection of 𝑛-ary operations on 𝐴 [Birk-
hoff 1946, 1987].

Example (Semigroup)
A semigroup (𝑆, ∗) is a set 𝑆 with an associative binary operation ∗ ∶ 𝑆 × 𝑆 → 𝑆.

Example (Monoid)
A monoid (𝑀, ∗, 𝜀) is a semigroup (𝑀, ∗) with an element 𝜀 ∈ 𝑀 which is an unit for ∗, i.e.
(∀𝑥)(𝑥 ∗ 𝜀 = 𝜀 ∗ 𝑥 = 𝑥).
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Homomorphisms
Definition
A homomorphism is a structure-preserving map between two algebraic structures.

Example
A homomorphism between two semigroups (𝑆, ∗) and (𝑆′, ∗′) is a function 𝜑 ∶ 𝑆 → 𝑆′ such
that:

(∀𝑥)(∀𝑦)[ 𝜑(𝑥 ∗ 𝑦) = 𝜑(𝑥) ∗′ 𝜑(𝑦) ].
Graphically,

(𝑆, ∗) (𝑆, ∗)

(𝑆′, ∗′) (𝑆′, ∗′)

𝑥 ∗ 𝑦

𝜑(𝑥), 𝜑(𝑦) 𝜑(𝑥 ∗ 𝑦)

𝜑(𝑥) ∗′ 𝜑(𝑦)
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Homomorphisms
Example
A homomorphism between two monoids (𝑀, ∗, 𝜀) and (𝑀 ′, ∗′, 𝜀′) is a function 𝜑 ∶ 𝑀 → 𝑀 ′

such that:

(∀𝑥)(∀𝑦)[ 𝜑(𝑥 ∗ 𝑦) = 𝜑(𝑥) ∗′ 𝜑(𝑦) ],
𝜑(𝜀) = 𝜀′.
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Homomorphisms
Definition
A homomorphism 𝜑 between two algebraic structures is [Cohn (1965) 1981]:

▶ a monomorphism if 𝜑 is an injection,
▶ an epimorphism if 𝜑 is a surjection,
▶ an endomorphism if 𝜑 is from an algebraic structure to itself,
▶ an isomorphism if 𝜑 is a bijection,
▶ an automorphism if 𝜑 is a bijective endomorphism.
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Closure Under Homomorphism
Definition
Let Σ and Γ be two alphabets. A homomorphism between (the monoids) (Σ∗, ·, 𝜀) and (Γ∗, ·, 𝜀)
is a function

ℎ ∶ Σ∗ → Γ∗

𝑎1𝑎2 ⋯ 𝑎𝑛 ↦ ℎ(𝑎1)ℎ(𝑎2) ⋯ ℎ(𝑎𝑛)
𝜀 ↦ 𝜀

Note: For this reason the textbook talks about a homomorphism ℎ ∶ Σ → Γ∗.

Closure Under Homomorphism 34/64



Closure Under Homomorphism
Example
Let ℎ ∶ {0, 1}∗ → {𝑎, 𝑏}∗ be a homomorphism defined by

ℎ(0) = 𝑎𝑏, ℎ(1) = 𝜀.

Then

ℎ(0011) = ℎ(0)ℎ(0)ℎ(1)ℎ(1)
= 𝑎𝑏𝑎𝑏.
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Closure Under Homomorphism
Definition
Let 𝐿 be a language over an alphabet Σ and let ℎ be a homomorphism on Σ. The application
of ℎ to 𝐿, denoted ℎ(𝐿), is defined by†

ℎ(𝐿) ≔ { ℎ(𝑤) ∣ 𝑤 ∈ 𝐿 }.

Inverse Homomorphism

Let h : Σ∗ → Θ∗ be a homom. Let L ⊆ Θ∗,
and define

h−1(L) = {w ∈ Σ∗ : h(w) ∈ L}

L h(L)

Lh-1 (L)

(a)

(b)

h

h

110

†Figure from Hopcroft, Motwani and Ullman [(1979) 2007, Fig. 4.5a].
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Closure Under Homomorphism
Example
Let ℎ ∶ {0, 1}∗ → {𝑎, 𝑏}∗ be a homomorphism defined by

ℎ(0) = 𝑎𝑏, ℎ(1) = 𝜀.

If 𝐿 = L(𝟏𝟎∗𝟏), then ℎ(𝐿) = L((𝒂𝒃)∗).
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Closure Under Homomorphism
Theorem 4.14
If 𝐿 is a regular language over the alphabet Σ and ℎ is a homomorphism on Σ, then ℎ(𝐿) is
also regular.

Proof plan
▶ Let 𝐸 be a regular expression such that 𝐿 = L(𝐸).
▶ Let ℎ(𝐸) be the regular expression replacing each symbol 𝑎 ∈ Σ by ℎ(𝑎) in the regular

expression 𝐸.
▶ We need to prove that L(ℎ(𝐸)) = ℎ(L(𝐸)).

(continued on next slide)
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Closure Under Homomorphism
Proving L(ℎ(𝐸)) = ℎ(L(𝐸))

▶ Basis step
▶ 𝐸 is 𝜀 or ∅.

1. ℎ(𝐸) = 𝐸 (ℎ does not affect 𝐸)
2. ℎ(L(𝐸)) = L(𝐸) (L(𝐸) is empty or only contains 𝜀)
3. L(ℎ(𝐸)) = L(𝐸) = ℎ(L(𝐸)) (by 1 and 2)

(continued on next slide)
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Closure Under Homomorphism
Proving L(ℎ(𝐸)) = ℎ(L(𝐸))

▶ Basis step
▶ 𝐸 = 𝒂

1. L(𝐸) = {𝑎}
2. ℎ(L(𝐸)) = {ℎ(𝑎)}
3. ℎ(𝐸) is the regular expression that is the string of symbols ℎ(𝑎)
4. L(ℎ(𝐸)) = {ℎ(𝑎)}
5. L(ℎ(𝐸)) = ℎ(L(𝐸)) (by transitivity between 2 and 4)

(continued on next slide)
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Closure Under Homomorphism
Proving L(ℎ(𝐸)) = ℎ(L(𝐸)) (continuation)

▶ Inductive step
▶ 𝐸 = 𝐹 + 𝐺

1. L(𝐸) = L(𝐹) ∪ L(𝐺) (def. of +)
2. ℎ(𝐸) = ℎ(𝐹 + 𝐺) = ℎ(𝐹) + ℎ(𝐺) (def. of ℎ(𝐸))
3. L(ℎ(𝐸)) = L(ℎ(𝐹) + ℎ(𝐺)) = L(ℎ(𝐹)) ∪ L(ℎ(𝐺)) (def. of +)
4. ℎ(L(𝐸)) = ℎ(L(𝐹) ∪ L(𝐺)) = ℎ(L(𝐹)) ∪ ℎ(L(𝐺)) (ℎ is applied to a language by

application to each of its strings)
5. L(ℎ(𝐹)) = ℎ(L(𝐹) and L(ℎ(𝐺)) = ℎ(L(𝐺) (IH)
6. L(ℎ(𝐸)) = ℎ(L(𝐸))

(continued on next slide)
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Closure Under Homomorphism
Proving L(ℎ(𝐸)) = ℎ(L(𝐸)) (continuation)

▶ Inductive step
▶ 𝐸 = 𝐹𝐺 (similar to the previous case)

▶ 𝐸 = 𝐹 ∗ (similar to the previous case)
1. L(𝐸) = (L(𝐹))∗ (def. of ∗)
2. ℎ(𝐸) = ℎ(𝐹 ∗) = (ℎ(𝐹))∗ (def. of ℎ(𝐸))
3. L(ℎ(𝐸)) = L((ℎ(𝐹))∗) = (L(ℎ(𝐹)))∗ (def. of ∗)
4. ℎ(L(𝐸)) = ℎ((L(𝐹))∗) = (ℎ(L(𝐹)))∗ (ℎ is applied to a language by application

to each of its strings)
5. L(ℎ(𝐹)) = ℎ(L(𝐹)) (IH)
6. L(ℎ(𝐸)) = ℎ(L(𝐸))
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Closure Under Homomorphism
Proving L(ℎ(𝐸)) = ℎ(L(𝐸)) (continuation)
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▶ 𝐸 = 𝐹 ∗ (similar to the previous case)

1. L(𝐸) = (L(𝐹))∗ (def. of ∗)
2. ℎ(𝐸) = ℎ(𝐹 ∗) = (ℎ(𝐹))∗ (def. of ℎ(𝐸))
3. L(ℎ(𝐸)) = L((ℎ(𝐹))∗) = (L(ℎ(𝐹)))∗ (def. of ∗)
4. ℎ(L(𝐸)) = ℎ((L(𝐹))∗) = (ℎ(L(𝐹)))∗ (ℎ is applied to a language by application

to each of its strings)
5. L(ℎ(𝐹)) = ℎ(L(𝐹)) (IH)
6. L(ℎ(𝐸)) = ℎ(L(𝐸))
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Closure Under Homomorphism
Example
Let Σ = {0, 1, 2}. Prove that 𝐿 is a language not regular.

𝐿 = { 0𝑖1𝑗2𝑘 ∣ 𝑖, 𝑗, 𝑘 ∈ ℤ+ and 𝑖 ≠ 𝑗 ≠ 𝑘 }.

Proof
1. We define the homomorphism

ℎ(0) = 0, ℎ(1) = 1, ℎ(2) = 𝜀.
2. The homomorphism ℎ removes the 2𝑘s, so

ℎ(𝐿) = { 0𝑖1𝑗 ∣ 𝑖, 𝑗 ∈ ℤ+ and 𝑖 ≠ 𝑗 }.
3. We know that ℎ(𝐿) is not regular, so 𝐿 is not regular.
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Closure Under Homomorphism
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Closure Under Homomorphism
Example
Let 𝐿 be a regular language and ℎ a homomorphism on 𝐿. Define ℎ∗(𝐿) by

ℎ∗(𝐿) = 𝐿 ∪ ℎ(𝐿) ∪ ℎ(ℎ(𝐿)) ∪ ℎ(ℎ(ℎ(𝐿))) ∪ …

Is ℎ∗(𝐿) necessarily regular?

Solution
No. Let 𝐿 = {01} and ℎ defined as ℎ(0) = 00 and ℎ(1) = 11. Then

ℎ∗(𝐿) = {01, 0011, 00001111, … }
= { 0𝑛1𝑛 ∣ 𝑛 = 2𝑘 for 𝑘 ≥ 0 },

which is a language not regular.†

†From somewhere in Internet (I don’t remember).
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Closure Under Inverse Homomorphism
Definition
Let ℎ ∶ Σ∗ → Γ∗ be a homomorphism and 𝐿 ⊆ Γ∗ a language. The application of ℎ−1 to 𝐿,
denoted ℎ−1(𝐿), is defined by†

ℎ−1(𝐿) ≔ { 𝑤 ∈ Σ∗ ∣ ℎ(𝑤) ∈ 𝐿 }.

Inverse Homomorphism

Let h : Σ∗ → Θ∗ be a homom. Let L ⊆ Θ∗,
and define

h−1(L) = {w ∈ Σ∗ : h(w) ∈ L}

L h(L)

Lh-1 (L)

(a)

(b)

h

h

110

Observation
Note that ℎ−1 is a relation but it is not necessarily a function.

†Figure from Hopcroft, Motwani and Ullman [(1979) 2007, Fig. 4.5b].
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Closure Under Inverse Homomorphism
Example
Let ℎ ∶ {𝑎, 𝑏} → {0, 1}∗ a homomorphism defined by

ℎ(𝑎) = 01, ℎ(𝑏) = 10,

and let 𝐿 be the language denoted by the regular expression (𝟎𝟎 + 𝟏)∗, i.e.

𝐿 = { 𝑤 ∈ {0, 1}∗ ∣ all the 0’s occur in adjacent pairs }.

Then
ℎ−1(𝐿) = L((𝒃𝒂)∗).

Note that ℎ−1 is not a function, but a relation.

It is necessary to prove ℎ(𝑤) ∈ 𝐿 ⇔ 𝑤 = 𝑏𝑎𝑏𝑎 ⋯ 𝑏𝑎.
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Closure Under Inverse Homomorphism
Theorem 4.16
Let ℎ ∶ Σ∗ → Γ∗ be a homomorphism and 𝐿 ⊆ Γ∗ a regular language. Then ℎ−1(𝐿) is regular
(proof using automata).
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Closure Under Inverse Homomorphism
Example
Prove that 𝐿 = { 0𝑛12𝑛 ∣ 𝑛 ≥ 0 } is a language not regular.

Proof
1. Given the homomorphism

ℎ(0) = 0, ℎ(1) = 11,
then

ℎ−1(𝐿) = { 0𝑛1𝑛 ∣ 𝑛 ≥ 0 }.

2. Since ℎ−1(𝐿) is not regular, then 𝐿 is not regular.
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Closure Under Inverse Homomorphism
Example
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Some Exercises
Exercise 4.2.2
If 𝐿 is a language, and 𝑎 is a symbol, then 𝐿/𝑎, the quotient of 𝐿 and 𝑎, is the set of strings 𝑤
such that 𝑤𝑎 is in 𝐿. For example, if 𝐿 = {𝑎, 𝑎𝑎𝑏, 𝑏𝑎𝑎}, then 𝐿/𝑎 = {𝜀, 𝑏𝑎}. Prove that if 𝐿 is
regular, so is 𝐿/𝑎. Hint: Start with a DFA for 𝐿 and consider the set of accepting states.

Proof (Hopcroft, Motwani and Ullman [(1979) 2007] solution)
Start with a DFA 𝐴 for 𝐿. Construct a new DFA 𝐵, that is exactly the same as 𝐴, except that
state 𝑞 is an accepting state of 𝐵 if and only if 𝛿(𝑞, 𝑎) is an accepting state of 𝐴. Then 𝐵
accepts input string 𝑤 if and only if 𝐴 accepts 𝑤𝑎; that is, L(𝐵) = 𝐿/𝑎.
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Closure Properties
Exercise 4.2.3
If 𝐿 is a language, and 𝑎 is a symbol, then 𝑎\𝐿 is the set of strings 𝑤 such that 𝑎𝑤 is in 𝐿. For
example, if 𝐿 = {𝑎, 𝑎𝑎𝑏, 𝑏𝑎𝑎}, then 𝑎\𝐿 = {𝜀, 𝑎𝑏}. Prove that if 𝐿 is regular, so is 𝑎\𝐿. Hint:
Start with a DFA for 𝐿 and consider its start state.

Proof (Hopcroft, Motwani and Ullman [(1979) 2007] solution)
Start with a DFA 𝐴 for 𝐿. Construct a new DFA 𝐵, that is exactly the same as 𝐴, except that
its start state is 𝛿(𝑞0, 𝑎) where 𝑞0 is the start state of 𝐴. Then 𝐵 accepts input string 𝑤 if and
only if 𝐴 accepts 𝑎𝑤; that is, L(𝐵) = 𝐿\𝑎.
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Closure Properties
Exercise 4.2.13.b
We can use closure properties to help prove certain languages are not regular. Start with the
fact that the language

𝐿0𝑛1𝑛 = { 0𝑛1𝑛 ∣ 𝑛 ≥ 0 }
is not a regular set. Prove that the following language not to be regular by transforming it, using
operations known to preserve regularity, to 𝐿0𝑛1𝑛:

𝐿 = { 0𝑛1𝑚2𝑛−𝑚 ∣ 𝑛 ≥ 𝑚 ≥ 0 }.
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