CM0081 Formal Languages and Automata § 1.5 The Central Concepts of Automata Theory

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2024-1

Preliminaries

Conventions

- The number and page numbers assigned to chapters, examples, exercises, figures, quotes, sections and theorems on these slides correspond to the numbers assigned in the textbook [Hopcroft, Motwani and Ullman (1979) 2007].
- The natural numbers include the zero, that is, $\mathbb{N} = \{0, 1, 2, ... \}$.

The power set of a set A, that is, the set of its subsets, is denoted by $\mathcal{P}A$.

Alphabets and Strings

Definition

An **alphabet** is a **finite**, non-empty set of symbols.

Alphabets and Strings

Definition

An **alphabet** is a finite, non-empty set of symbols.

Examples

$$\begin{split} \Sigma_1 &= \{0,1\},\\ \Sigma_2 &= \{a,b,\ldots,z\},\\ \Sigma_3 &= \{\,x\mid x \text{ is a Unicode codepoint}\,\}. \end{split}$$

A string (or word or event) is a finite sequence of symbols of an alphabet.

A string (or word or event) is a finite sequence of symbols of an alphabet.

Definition

The **empty string**, denoted by ε , is the string with zero occurrences of symbols.

Observation

The empty string may be chosen from any alphabet.

A string (or word or event) is a finite sequence of symbols of an alphabet.

Definition

The **empty string**, denoted by ε , is the string with zero occurrences of symbols.

Observation

The empty string may be chosen from any alphabet.

Conventions

Alphabets: Σ, Γ, \dots Symbols: a, b, c, \dots Strings: w, x, y, z, \dots

All Strings over an Alphabet

Definition

Let Σ be an alphabet. The set of all the strings over Σ (including the empty string), denoted Σ^* , can be inductively defined by the following clauses:

```
i) Basis step: \varepsilon \in \Sigma^*,
```

ii) Inductive step: If $x \in \Sigma^*$ and $a \in \Sigma$ then $xa \in \Sigma^*$.

Or, equivalently, by using the following inference rules:

$\varepsilon\in\Sigma^*$	$x \in \Sigma^*$	$a \in \Sigma$
	$xa\in \Sigma^*$	

- -

Operations on Alphabets

Definition

Let a be a symbol on an alphabet Σ . The **powers of** \mathbf{a} , denoted a^n , with $n \ge 0$, is the string formed by n repetitions of the symbol a (see, e.g. [Kozen (1997) 2012]). This operation is recursively defined by:

$$\begin{split} (-)^{(-)} &: \Sigma \times \mathbb{N} \to \Sigma^* \\ a^0 &= \varepsilon, \\ a^{n+1} &= a^n a. \end{split}$$

Definition

Let Σ be an alphabet. The **length** of a string x on Σ , denoted |x| is the number of symbols in x. This function is recursively defined by

$$\begin{split} |-|: \Sigma^* \to \mathbb{N} \\ |\varepsilon| &= 0, \\ |xa| &= |x| + 1. \end{split}$$

Definition

Let Σ be an alphabet. The **concatenation** of strings is recursively defined by

$$\begin{split} (-)\cdot(-): \Sigma^*\times\Sigma^*\to\Sigma^*\\ x\cdot\varepsilon &= x,\\ x\cdot ya &= (x\cdot y)a. \end{split}$$

That is, let $x=a_1a_2\ldots a_n$ and $y=b_1b_2\ldots b_n$ two strings, then

 $x \cdot y = a_1 a_2 \dots a_m b_1 b_2 \dots b_n.$

Definition

Let Σ be an alphabet. The **concatenation** of strings is recursively defined by

$$\begin{split} (-) \cdot (-) &: \Sigma^* \times \Sigma^* \to \Sigma^* \\ & x \cdot \varepsilon = x, \\ & x \cdot ya = (x \cdot y)a. \end{split}$$

That is, let $x=a_1a_2\ldots a_n$ and $y=b_1b_2\ldots b_n$ two strings, then

 $x \cdot y = a_1 a_2 \dots a_m b_1 b_2 \dots b_n.$

Notation

We remove the dot in the concatenation, that is, $xy := x \cdot y$.

Operations on Symbols, Strings and Alphabets

Some properties of concatenation

- Let x, y and z be strings.
 - (i) Concatenation is associative, that is, x(yz) = (xy)z.
- (ii) The empty empty word is the unit for concatenation, that is, $x\varepsilon = \varepsilon x = x$.
- (iii) Concatenation is not commutative, that is, $xy \neq yx$.

Example

Let Σ be an alphabet and let x and y be strings over Σ . Prove that

|xy| = |x| + |y|.

Proof

By structural induction on y.

b Basis step $(y = \varepsilon)$:

 $\begin{aligned} |x\varepsilon| &= |x| \\ &= |x| + |\varepsilon| \end{aligned}$

(def. of concatenation) (def. of length)

lnduction step
$$(y = wa)$$
:

 $\begin{aligned} |x(wa)| &= |(xw)a| \\ &= |xw| + 1 \\ &= (|x| + |w|) + 1 \\ &= |x| + (|w| + 1) \\ &= |x| + |wa| \end{aligned}$

(def. of concatenation) (def. of length) (IH) (arithmetic) (def. of length)

Operations on Symbols, Strings and Alphabets

Proof

By structural induction on y (or by mathematical induction on |y|).

- Basis step $(y = \varepsilon)$ (or |y| = 0, then $y = \varepsilon$):
 - $\begin{aligned} |x\varepsilon| &= |x| & (def. of concatenation) \\ &= |x| + |\varepsilon| & (def. of length) \end{aligned}$

lnduction step (y = wa) (or |y| = n + 1, then y = wa where |w| = n):

 $\begin{aligned} |x(wa)| &= |(xw)a| & (def. of concatenation) \\ &= |xw| + 1 & (def. of length) \\ &= (|x| + |w|) + 1 & (IH) \\ &= |x| + (|w| + 1) & (arithmetic) \\ &= |x| + |wa| & (def. of length) \end{aligned}$

Operations on Symbols, Strings and Alphabets

Strings, length and concatenation in Haskell

data List	a = Nil Cons a (List a)	
data RList	a = Lin Snoc (RList a) a	ł

Strings, length and concatenation in Haskell

data List a = Nil | Cons a (List a)
data RList a = Lin | Snoc (RList a) a

lengthR :: RList a -> Int lengthR Lin = 0 -- Eq. 1 lengthR (Snoc xs x) = lengthR xs + 1 -- Eq. 2

Strings, length and concatenation in Haskell

data List a = Nil | Cons a (List a)
data RList a = Lin | Snoc (RList a) a

lengthR :: RList a -> Int lengthR Lin = 0 -- Eq. 1 lengthR (Snoc xs x) = lengthR xs + 1 -- Eq. 2

(+++) :: RList a -> RList a -> RList a (+++) xs Lin = xs -- Eq. 1 (+++) xs (Snoc ys y) = Snoc (xs +++ ys) y -- Eq. 2

Example

Prove that lengthR (xs +++ ys) =lengthR xs + lengthR ys.

Example

Prove that lengthR (xs +++ ys) =lengthR xs + lengthR ys.

Proof by structural recursion on ys

Basis step (ys is Lin):

lengthR (xs +++ Lin)
= lengthR xs
= lengthR xs +++ lengthR Lin

(Eq. 1 of (+++)) (Eq. 1 of lengthR)

Proof by structural recursion on |ys| (continuation)

Induction step (ys is Snoc ys' y'):

lengthR (xs +++ (Snoc ys' y'))

- = lengthR (Snoc (xs +++ ys') y'))
- = lengthR (xs +++ ys') + 1
- = (lengthR xs + lengthR ys') + 1
- = lengthR xs + (lengthR ys' + 1)
- = lengthR xs + lengthR (Snoc ys' y)

(Eq. 2 of (+++))
(Eq. 2 of lengthR)
(IH)
(arithmetic)
(Eq. 2 of lengthR)

Definition

Let x be a string on an alphabet Σ . The **powers of** x, denoted x^n , with $n \ge 0$, is recursively defined by

$$\begin{split} (-)^{(-)} &: \Sigma^* \times \mathbb{N} \to \Sigma^* \\ x^0 &= \varepsilon, \\ x^{n+1} &= x^n \cdot x. \end{split}$$

The **n-power** of an alphabet Σ , denoted Σ^n , is the set of strings of length n over Σ .

Examples

Given $\Sigma = \{0,1\}$ then

$$\begin{split} \Sigma^0 &= \{\varepsilon\},\\ \Sigma^1 &= \{0,1\},\\ \Sigma^2 &= \{00,01,10,11\},\\ \Sigma^3 &= \{000,001,010,011,100,101,110,111\}. \end{split}$$

Operations Alphabets

Example

Let Σ be an alphabet. Then

 $\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \cdots$

Definition

If Σ is an alphabet and $L \subseteq \Sigma^*$ then L is a **language** over Σ .

Definition

If Σ is an alphabet and $L \subseteq \Sigma^*$ then L is a **language** over Σ .

Examples

 $\blacktriangleright \ \emptyset$ and Σ^* are languages over any alphabet

Definition

If Σ is an alphabet and $L \subseteq \Sigma^*$ then L is a **language** over Σ .

Examples

- $\blacktriangleright \ \emptyset$ and Σ^* are languages over any alphabet
- The set of string of 0's and 1's with equal number of each

Definition

If Σ is an alphabet and $L \subseteq \Sigma^*$ then L is a **language** over Σ .

Examples

- $\blacktriangleright \ \emptyset$ and Σ^* are languages over any alphabet
- \blacktriangleright The set of string of 0's and 1's with equal number of each

 $\{\varepsilon, 01, 10, 0011, 0110, 1001, 1100, \dots\}$

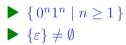
$\blacktriangleright \{ 0^n 1^n \mid n \ge 1 \}$

Definition

If Σ is an alphabet and $L \subseteq \Sigma^*$ then L is a **language** over Σ .

Examples

- $\blacktriangleright \ \emptyset$ and Σ^* are languages over any alphabet
- The set of string of 0's and 1's with equal number of each



Definition

If Σ is an alphabet and $L \subseteq \Sigma^*$ then L is a **language** over Σ .

Examples

- $\blacktriangleright \ \emptyset$ and Σ^* are languages over any alphabet
- The set of string of 0's and 1's with equal number of each

- $\blacktriangleright \left\{ \, 0^n 1^n \mid n \geq 1 \, \right\}$
- $\blacktriangleright \ \{\varepsilon\} \neq \emptyset$
- ▶ The set of binary numbers whose value is a prime

Definition

If Σ is an alphabet and $L \subseteq \Sigma^*$ then L is a **language** over Σ .

Examples

- $\blacktriangleright \ \emptyset$ and Σ^* are languages over any alphabet
- The set of string of 0's and 1's with equal number of each

- $\blacktriangleright \left\{ 0^n 1^n \mid n \ge 1 \right\}$
- $\blacktriangleright \ \{\varepsilon\} \neq \emptyset$
- The set of binary numbers whose value is a prime
- The set of legal C programs

Question

Is the set of legal English words a language?

Let a set A the domain of a problem. A **decision problem** on A is a function (see, e.g. [Kozen (1997) 2012])

 $f:A\to \{0,1\}.$

Definition

Let $L \subseteq \Sigma^*$ be a language and let $w \in \Sigma^*$ be string. The **decision problem for L** is to decide whether or not $w \in L$.

Definition

Let $L \subseteq \Sigma^*$ be a language and let $w \in \Sigma^*$ be string. The **decision problem for L** is to decide whether or not $w \in L$.

Some questions

(i) Is it a problem or a decision problem?

Definition

Let $L \subseteq \Sigma^*$ be a language and let $w \in \Sigma^*$ be string. The **decision problem for L** is to decide whether or not $w \in L$.

Some questions

- (i) Is it a problem or a decision problem?
- (ii) Is it a language or a problem?

Definition

Let $L \subseteq \Sigma^*$ be a language and let $w \in \Sigma^*$ be string. The **decision problem for L** is to decide whether or not $w \in L$.

Some questions

- (i) Is it a problem or a decision problem?
- (ii) Is it a language or a problem?
- (iii) Is the problem decidable or undecidable?

Definition

Let $L \subseteq \Sigma^*$ be a language and let $w \in \Sigma^*$ be string. The **decision problem for L** is to decide whether or not $w \in L$.

Some questions

- (i) Is it a problem or a decision problem?
- (ii) Is it a language or a problem?
- (iii) Is the problem decidable or undecidable?
- (iv) Is the problem tractable or intractable?

References

Hopcroft, J. E., Motwani, R. and Ullman, J. D. [1979] (2007). Introduction to Automata Theory, Languages, and Computation. 3rd ed. Pearson Education (cit. on p. 2).

