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Preliminaries
Conventions

▶ The number and page numbers assigned to chapters, examples, exercises, figures, quotes,
sections and theorems on these slides correspond to the numbers assigned in the
textbook [Hopcroft, Motwani and Ullman (1979) 2007].

▶ The natural numbers include the zero, that is, ℕ = {0, 1, 2, … }.
▶ The power set of a set 𝐴, that is, the set of its subsets, is denoted by 𝒫𝐴.
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Theorems About Recursive Languages
Theorem 9.3
If 𝐿 is a recursive language, then 𝐿 is also a recursive language.

Proof
Whiteboard.

Theorem 9.4
If both 𝐿 and 𝐿 are recursively enumerable languages, then 𝐿 is recursive (and 𝐿 is recursive
as well by Theorem 9.3).

Proof
Whiteboard.
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Theorems About Recursive Languages
Possible relations between a language 𝐿 and its complement 𝐿
(i) Both 𝐿 and 𝐿 are recursive.

(ii) Neither 𝐿 nor 𝐿 are recursively enumerable.
(iii) 𝐿 is recursively enumerable but not recursive and 𝐿 is not recursively enumerable.
(iv) 𝐿 is recursively enumerable but not recursive and 𝐿 is not recursively enumerable.
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Theorems About Recursive Languages
Exercise 9.2.5
Let 𝐿 be recursively enumerable and let 𝐿 be non recursively enumerable. Consider the language

𝐿′ = { 0𝑤 ∣ 𝑤 is in 𝐿 }∪ { 1𝑤 ∣ 𝑤 is not in 𝐿 }.

Can you say for certain whether 𝐿′ is recursive, recursively enumerable, or non recursively
enumerable? Justify your answer.

Solution (from Hopcroft, Motwani and Ullman [(1979) 2007])
Suppose 𝐿′ were recursively enumerable. Then we could design a Turing machine 𝑀 for 𝐿
as follows. Given input 𝑤, 𝑀 changes its input to 1𝑤 and simulates the hypothetical Turing
machine for 𝐿′. If that Turing machine accepts, then 𝑤 is in 𝐿, so 𝑀 should accept. If the
Turing machine for 𝐿′ never accepts, then neither does 𝑀 . Thus, 𝑀 would accept exactly 𝐿,
which contradicts the fact that 𝐿 is not recursively enumerable. We conclude that 𝐿′ is not
recursively enumerable.
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The Universal Language
Conventions

1. (𝑀, 𝑤): Represents the Turing machine 𝑀 with input 𝑤.
2. 𝑤 is a string of 0’s and 1’s.

Codification of a Turing machine with an input
Let 𝑤𝑖 be the codification of a Turing machine 𝑀 . The codification of (𝑀, 𝑤) is defined by

⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗(𝑀, 𝑤) ≔ 𝑤𝑖111𝑤.
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The Universal Language
Definition
Let Σ = {0, 1}. The universal language, denoted Lu, is the set of binary strings that encode
a pair (𝑀, 𝑤) such that 𝑤 ∈ L(𝑀), that is,

Lu ≔ { ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗(𝑀, 𝑤) ∈ Σ∗ ∣ 𝑤 ∈ L(𝑀) }.

The Universal Language 11/38



The Universal Language
Theorem
The language Lu is recursively enumerable.

Idea of the proof
There exists a Turing machine U such that Lu = L(U). The machine U is called a universal
Turing machine.
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The Universal Language
Theorem 9.6
The language Lu is recursively enumerable but not recursive.

Proof of Lu is not recursive (by contradiction (proof of negation))
Suppose Lu is recursive
⇒ Lu is recursive
⇒ Ld is recursive (see next slide)
⇒ Contradiction because Ld is non recursively enumerable
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The Universal Language
From the recursiveness of Lu to the recursiveness of Ld
Given a terminating Turing machine for accepting Lu we could use this machine for building a
terminating Turing machine for accepting Ld.†

Since Ld is not recursive (because it is not recursive enumerable) then Lu is not recursive.

†Figure from Hopcroft, Motwani and Ullman [(1979) 2007, Fig. 9.6].
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Code for a Universal Turing Machine
Code for U
Since U is a Turing machine exists 𝑖 (1654 digits) such that U = 𝑀𝑖 given by (using a different
codification) [Penrose 1991, pp. 56-57]:

724485533533931757719839503961571123795236067255655963110814479660650
505940424109031048361363235936564444345838222688327876762655614469281
411771501784255170755408565768975334635694247848859704693472573998858
228382779529468346052106116983594593879188554632644092552550582055598
945189071653741489603309675302043155362503498452983232065158304766414
213070881932971723415105698026273468642992183817215733348282307345371
342147505974034518437235959309064002432107734217885149276079759763441
512307958639635449226915947965461471134570014504816733756217257346452
273105448298078496512698878896456976090663420447798902191443793283001
949357096392170390483327088259620130177372720271862591991442827543742

(continued on next slide)
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Code for a Universal Turing Machine

235135567513408422229988937441053430547104436869587640517812801943753
081387063994277282315642528923751456544389905278079324114482614235728
619311833261065612275553181020751108533763380603108236167504563585216
421486954234718742643754442879006248582709124042207653875426445413345
174856629157429990950262300973373813772416217274772361020678685400289
356608569682262014198248621698902609130940298570600174300670086896759
034473417412787425581201549366393899690581773859165405535670409282133
222163141097871081459978669599704509681841906299443656015145490488092
208448003482249207730403043188429899393135266882349662101947161910701
461968523192847482034495897709553561107027581748733327296678998798473
284098190764851272631001740166787363477605857245036964434897992034489
997455662402937487668839751404451665707750060513883991668814072545544
665222050724262392379211525318162512536305093172863142200406457130527
5802307665183351995689139748137504926429605010013651980186945639498
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Turing’s Universal Turing Machine

▶ Based on 𝑀 -functions (subroutines with parameters) [Sicard 1997; Copeland 2004b].
▶ The machine is composed by 12 symbols and 4.000 instructions,

approximately [Sicard Ramírez 1998].
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Small Universal Turing Machines
Notation
Let UTM(𝑚, 𝑛) be the class of universal Turing machines with 𝑚 states and 𝑛 symbols.

Theorem
If UTM(𝑚, 𝑛) ≠ ∅ then [Shannon 1956]:
(i) UTM(2, 𝑛′) ≠ ∅, where 𝑛′ is at most 4𝑚𝑛 + 𝑛 and

(ii) UTM(𝑚′, 2) ≠ ∅, where 𝑚′ = (2𝑙 − 1)𝑚 and 𝑙 is the smaller integer such that 𝑚 ≤ 2𝑙.
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Small Universal Turing Machines
Theorem
There exists universal Turing machines in the following classes [Rogozhin 1996; Neary and
Woods 2012]:

UTM(𝑚, 𝑛) Author(s)

(24, 2) Rogozhin [1996]
(19, 2) Baiocchi [2001]
(18, 2) Neary and Woods [2007]
(15, 2) Neary and Woods [2009]

(continued on next slide)
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Small Universal Turing Machines
Theorem (continuation)

UTM(𝑚, 𝑛) Author(s)

(10, 3) Rogozhin [1996]
(9, 3) Neary and Woods [2009]

(7, 4) Rogozhin [1996]
(6, 4) Neary and Woods [2009]

(5, 5) Rogozhin [1996]
(4, 6) Rogozhin [1996]
(3, 10) Rogozhin [1996]
(2, 18) Rogozhin [1996]
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Small Universal Turing Machines
Theorem
The following classes are empty [Rogozhin 1996; Neary and Woods 2012]:

UTM(𝑚, 𝑛) Author(s)

(𝑚, 1) trivial
(3, 2) Rogozhin [1996]
(2, 3) Rogozhin [1996]
(2, 2) Rogozhin [1996]
(1, 𝑛) Herman [1968]
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Wolfram Turing Machine THE BOOK STORE DOWNLOADS EDUCATION ARCHIVES FORUM

© 2012 Stephen Wolfram, LLC stephenwolfram.com | wolfram.com | send a message | contact info

Announced May 14th, 2007: 5th Anniversary of the Publication of A New Kind
of Science

Is this Turing machine universal, or
not?

The machine has 2 states and 3 colors, and is 596440 in Wolfram's numbering scheme.

If it is universal then it is the smallest universal Turing machine that exists.

BACKGROUND » TECHNICAL DETAILS » GALLERY »       NEWS »

PRIZE COMMITTEE » RULES & GUIDELINES » FAQs »

A universal Turing machine is powerful enough to emulate any standard computer.

The question is: how simple can the rules for a universal Turing machine be?

Since the 1960s it has been known that there is a universal 7,4 machine. In A New

Kind of Science, Stephen Wolfram found a universal 2,5 machine, and suggested that

the particular 2,3 machine that is the subject of this prize might be universal.

The prize is for determining whether or not the 2,3 machine is in fact universal.

What is a Turing Machine? »  |  Notable Universal Turing Machines »

INTERACTIVE DEMONSTRATIONS »        PRINTABLE POSTER »       

NKS|ONLINE »

SPONSORED BY WOLFRAM RESEARCH & STEPHEN WOLFRAM

Wolfram 2,3 Turing Machine Research Prize http://www.wolframscience.com/prizes/tm23/

1 of 1 10/11/2012 09:31 AM
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Conway’s Game of Life
Examples
(From Wikipedia)

Pulsar (Oscillator)
Author: Jokey Smurf

Glider (Spaceship)
Author: Rodrigo Silveira Camargo
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Conway’s Game of Life
Rules
(i) Any live cell with fewer than two live neighbours dies, as if caused by under-population.

(ii) Any live cell with two or three live neighbours lives on to the next generation.
(iii) Any live cell with more than three live neighbours dies, as if by overcrowding.
(iv) Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction.

Theorem
It is possible codified a universal Turing machine in Conway’s Game of Life [Rendell 2011].
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The Halting Problem
The language of the halting problem
Let Σ = {0, 1}. The original Turing machine accepted by halting, no by final state.

H(𝑀) ≔ { 𝑤 ∈ Σ∗ ∣ 𝑀 halts given the input 𝑤 }.

We define the language of the halting problem by

Lhp ≔ { ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗(𝑀, 𝑤) ∈ Σ∗ ∣ 𝑤 ∈ H(𝑀) }.

Exercise 9.2.1
Show that Lhp is recursively enumerable but not recursive.
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The Halting Problem: State of Art†230 M. Margenstern / Theoretical Computer Science 231 (2000) 217–251

Fig. 2. The state of the art. Black squares indicate undecidable points, while squares indicate decidable
points, points marked with plus between the white squares lines and the line of black squares in the shape
of a hyperbola correspond to sets for which the status of the halting problem is not known.

author improved some of the results obtained in 1982 [94–96]. Yet his paper of 1982
had remained unnoticed by the scienti�c community for ten years. The technique used
in order to obtain these results will be explained in our survey, in Section 3.4.2.
Let us have a look now in the opposite direction: it is trivial that Turing machines on

a single letter alphabet have a decidable halting problem. It is not that trivial that the
same property holds for machines with a single state, whatever the number of symbols
is in the machine alphabet. This was de�nitely proved by Hermann in 1966 [32].
For more than one state, one does not know much. As for proving the decidability

of the halting problem, M. Minsky writes in his famous book of 1967 that he and
one of his students “did this for all 2× 2 machines [1961, unpublished] by a tedious
reduction to thirty-odd cases (unpublishable)” [72, p. 281, last two lines]. Six years
later, Pavlotskaya proved the same theorem [82] in a compact, very short proof. This
paper has also remained unnoticed for many years. A few years later [84], she proved
that the point 3× 2 is also decidable.
All these results about the decidability and undecidability of the halting problem for

Turing machines can be represented as in Fig. 2.

3.1. Decidability criteria

Let us now introduce a more precise notion of decidability criterion, respectively
strong decidability criterion. Let c be an integer-valued function de�ned on a set M
of Turing machines in M with the following property: there is an integer f such that

■ Undecidable
□ Decidable
+ Unknown

†Figure from [Margenstern 2000].
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The Halting Problem
Observation
The halting problem was introduced and named by Davis [1958, p. 70] not by Turing himself,
contrary to popular belief [Copeland 2004a, p. 40].

Practical approach
‘In contrast to popular belief, proving termination is not always impossible.’ [Cook, Podelski and
Rybalchenko 2011, p. 1]
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