CM0081 Formal Languages and Automata § 3.4 Algebraic Laws for Regular Expressions

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2024-1

Preliminaries

Conventions

- The number and page numbers assigned to chapters, examples, exercises, figures, quotes, sections and theorems on these slides correspond to the numbers assigned in the textbook [Hopcroft, Motwani and Ullman (1979) 2007].
- The natural numbers include the zero, that is, $\mathbb{N} = \{0, 1, 2, ...\}$.

The power set of a set A, that is, the set of its subsets, is denoted by $\mathcal{P}A$.

Definition

Two regular expressions with variables are **equivalent** if whatever languages we substitute for the variables, the results of the two expressions are the same language.

Definition

Two regular expressions with variables are **equivalent** if whatever languages we substitute for the variables, the results of the two expressions are the same language.

Notation

Let M, N and P be regular expression variables.

Definition

Two regular expressions with variables are **equivalent** if whatever languages we substitute for the variables, the results of the two expressions are the same language.

Notation

Let M, N and P be regular expression variables.

Sugar syntax

 $\begin{aligned} M^+ &\coloneqq M M^*, \\ M? &\coloneqq \varepsilon + M. \end{aligned}$

Algebraic Laws for Regular Expressions

Some laws for union

$$(M + N) + P = M + (N + P)$$
$$M + \emptyset = \emptyset + M = M$$
$$M + N = N + M$$
$$M + M = M$$

(associativity)
(identity)
(commutativity)
(idempotence)

Observation

There is no inverse for union.

Some laws for concatenation

(MN)P = M(NP) $M\varepsilon = \varepsilon M = M$ $MN \neq NM$ $M\emptyset = \emptyset M = \emptyset$

(associativity)
(identity)
(non-commutativity)
(Ø is the annihilator for concatenation)

Observation

There is no inverse for concatenation.

Some laws for union and concatenation

$$\begin{split} M(N+P) &= MN + MP \\ (M+N)P &= MP + NP \end{split}$$

(distributive) (distributive)

Some laws for closure

 $(M^*)^* = M^*$ $\emptyset^* = \varepsilon$ $\varepsilon^* = \varepsilon$ $(\varepsilon + M)^* = M^*$ $M^* = M^+ + \varepsilon$

(idempotence)

Observation

A complete set of axioms for the regular expressions is indicated in [Kozen (1997) 2012, Lecture 9].

Example

 $0 + (\varepsilon + 1)\underline{(\varepsilon + 1)^*}0 = 0 + \underline{(\varepsilon + 1)1^*}0$ = 0 + (\vec{\vec{\vec{1}^*}} + 11^*)0 = 0 + (1^* + \vec{11^*})0 = 0 + (\vec{1^*} + 1^+)0 = 0 + 1^*0 = 1^*0 $((\varepsilon + M)^* = M^*)$ (distributive) (identity) (def. L⁺) (equivalence) (equivalence)

Method

Let E and F be two regular expressions with the same set of variables $\{M_1, \dots, M_n\}$.

To test if E = F:

- 1. Convert E and F to concrete regular expressions C and D, replacing each M_i by a different symbol a_i , for i = 1, 2, ..., n.
- 2. Test whether L(C) = L(D). If so, then E = F, and if not $E \neq F$.

Method

Let E and F be two regular expressions with the same set of variables $\{M_1, \dots, M_n\}$.

To test if E = F:

- 1. Convert E and F to concrete regular expressions C and D, replacing each M_i by a different symbol a_i , for i = 1, 2, ..., n.
- 2. Test whether L(C) = L(D). If so, then E = F, and if not $E \neq F$.

Observation

We are proving by example!

Example

Prove or disprove that $M^* = M^*M^*$.

Example

Prove or disprove that $M^* = M^* M^*$.

Proof

We replace the variable M by the concrete regular expression a.

 $a^* \stackrel{?}{=} a^*a^*.$

Example

Prove or disprove that $M^* = M^* M^*$.

Proof

We replace the variable M by the concrete regular expression a.

 $a^* \stackrel{?}{=} a^*a^*.$

Because $L(a^*) = L(a^*a^*)$ we conclude that

 $M^* = M^* M^*.$

Example

Prove or disprove that M + NM = (M + N)M.

Example

Prove or disprove that M + NM = (M + N)M.

Refutation

We replace the variables M and N by the concrete regular expressions a and b respectively.

 $a + ba \stackrel{?}{=} (a + b)a.$

Example

Prove or disprove that M + NM = (M + N)M.

Refutation

We replace the variables M and N by the concrete regular expressions a and b respectively.

 $a + ba \stackrel{?}{=} (a + b)a.$

Because $aa \notin L(a + ba)$ and $aa \in L((a + b)a)$ then

 $L(a + ba) \neq L((a + b)a).$

So, we can conclude

 $M + NM \neq (M + N)M.$

Discovering Laws for Regular Expressions

Example (Exercise 3.4.2.d)

Prove or disprove that $(M + N)^*N = (M^*N)^*$.

Example (Exercise 3.4.2.d)

Prove or disprove that $(M + N)^*N = (M^*N)^*$.

Refutation

We replace the variables M and N by the concrete regular expressions a and b respectively.

 $(\boldsymbol{a}+\boldsymbol{b})^*\boldsymbol{b} \stackrel{?}{=} (\boldsymbol{a}^*\boldsymbol{b})^*.$

Example (Exercise 3.4.2.d)

Prove or disprove that $(M + N)^*N = (M^*N)^*$.

Refutation

We replace the variables M and N by the concrete regular expressions a and b respectively.

 $(\boldsymbol{a}+\boldsymbol{b})^*\boldsymbol{b}\stackrel{?}{=}(\boldsymbol{a}^*\boldsymbol{b})^*.$

Since $\varepsilon \notin (a + b)^* b$ and $\varepsilon \in (a^* b)^*$ then

 $(M+N)^*N \neq (M^*N)^*.$

Example (counter-example)

Extensions of the previous test beyond regular expressions may fail.

Example (counter-example)

Extensions of the previous test beyond regular expressions may fail.

- 1. Add \cap to the regular expression operators.
- 2. Test if $M \cap N \cap P = M \cap N$.
- 3. From M = a, N = b and P = c and since

 $\{a\}\cap\{b\}\cap\{c\}=\emptyset=\{a\}\cap\{b\},$

we should conclude that the 'property' is true.

Example (counter-example)

Extensions of the previous test beyond regular expressions may fail.

- 1. Add \cap to the regular expression operators.
- 2. Test if $M \cap N \cap P = M \cap N$.
- 3. From M = a, N = b and P = c and since

 $\{a\}\cap\{b\}\cap\{c\}=\emptyset=\{a\}\cap\{b\},$

we should conclude that the 'property' is true.

4. But, the 'property' is false. For example, if M = N = a and $P = \emptyset$ then

 $M\cap N\cap P\neq M\cap N.$

References

- Hopcroft, J. E., Motwani, R. and Ullman, J. D. [1979] (2007). Introduction to Automata Theory, Languages, and Computation. 3rd ed. Pearson Education (cit. on p. 2).
- Kozen, D. C. [1997] (2012). Automata and Computability. Third printing. Undergraduate Texts in Computer Science. Springer. DOI: 10.1007/978-1-4612-1844-9 (cit. on p. 10).