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Preliminaries
Conventions
▶ The number and page numbers assigned to chapters, examples, exercises, figures, quotes,

sections and theorems on these slides correspond to the numbers assigned in the
textbook [Hopcroft, Motwani and Ullman (1979) 2007].

▶ The natural numbers include the zero, that is, ℕ = {0, 1, 2,… }.
▶ The power set of a set 𝐴, that is, the set of its subsets, is denoted by 𝒫𝐴.
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Algebraic Laws for Regular Expressions
Definition
Two regular expressions with variables are equivalent if whatever languages we substitute for
the variables, the results of the two expressions are the same language.

Notation
Let 𝑀 , 𝑁 and 𝑃 be regular expression variables.

Sugar syntax

𝑀+ ≔ 𝑀𝑀∗,
𝑀? ≔ 𝜀 +𝑀.
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Algebraic Laws for Regular Expressions
Some laws for union

(𝑀 +𝑁) + 𝑃 = 𝑀 + (𝑁 + 𝑃) (associativity)
𝑀 + ∅ = ∅ +𝑀 = 𝑀 (identity)
𝑀 +𝑁 = 𝑁 +𝑀 (commutativity)
𝑀 +𝑀 = 𝑀 (idempotence)

Observation
There is no inverse for union.
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Algebraic Laws for Regular Expressions
Some laws for concatenation

(𝑀𝑁)𝑃 = 𝑀(𝑁𝑃) (associativity)
𝑀𝜀 = 𝜀𝑀 = 𝑀 (identity)
𝑀𝑁 ≠ 𝑁𝑀 (non-commutativity)
𝑀∅ = ∅𝑀 = ∅ (∅ is the annihilator for concatenation)

Observation
There is no inverse for concatenation.
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Algebraic Laws for Regular Expressions
Some laws for union and concatenation

𝑀(𝑁 + 𝑃) = 𝑀𝑁 +𝑀𝑃 (distributive)
(𝑀 +𝑁)𝑃 = 𝑀𝑃 +𝑁𝑃 (distributive)
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Algebraic Laws for Regular Expressions
Some laws for closure

(𝑀∗)∗ = 𝑀∗ (idempotence)
∅∗ = 𝜀
𝜀∗ = 𝜀

(𝜀 +𝑀)∗ = 𝑀∗

𝑀∗ = 𝑀+ + 𝜀
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Algebraic Laws for Regular Expressions
Observation
A complete set of axioms for the regular expressions is indicated in [Kozen (1997) 2012, Lec-
ture 9].
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Simplification of Regular Expressions
Example

𝟎 + (𝜀 + 𝟏)(𝜀 + 𝟏)∗𝟎 = 𝟎 + (𝜀 + 𝟏)𝟏∗𝟎 ((𝜀 +𝑀)∗ = 𝑀∗)
= 𝟎 + (𝜀𝟏∗ + 𝟏𝟏∗)𝟎 (distributive)
= 𝟎 + (𝟏∗ + 𝟏𝟏∗)𝟎 (identity)
= 𝟎 + (𝟏∗ + 𝟏+)𝟎 (def. 𝐿+)
= 𝟎 + 𝟏∗𝟎 (equivalence)
= 𝟏∗𝟎 (equivalence)
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Discovering Laws for Regular Expressions
Method
Let 𝐸 and 𝐹 be two regular expressions with the same set of variables {𝑀1,… ,𝑀𝑛}.
To test if 𝐸 = 𝐹 :

1. Convert 𝐸 and 𝐹 to concrete regular expressions 𝐶 and 𝐷, replacing each 𝑀𝑖 by a different
symbol 𝒂𝒊, for 𝑖 = 1, 2,… , 𝑛.

2. Test whether L(𝐶) = L(𝐷). If so, then 𝐸 = 𝐹 , and if not 𝐸 ≠ 𝐹 .

Observation
We are proving by example!
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Discovering Laws for Regular Expressions
Example
Prove or disprove that 𝑀∗ = 𝑀∗𝑀∗.

Proof
We replace the variable 𝑀 by the concrete regular expression 𝒂.

𝒂∗ ≟ 𝒂∗𝒂∗.

Because L(𝒂∗) = L(𝒂∗𝒂∗) we conclude that

𝑀∗ = 𝑀∗𝑀∗.
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Discovering Laws for Regular Expressions
Example
Prove or disprove that 𝑀 +𝑁𝑀 = (𝑀 +𝑁)𝑀 .

Refutation
We replace the variables 𝑀 and 𝑁 by the concrete regular expressions 𝒂 and 𝒃 respectively.

𝒂 + 𝒃𝒂 ≟ (𝒂 + 𝒃)𝒂.

Because 𝑎𝑎 ∉ L(𝒂 + 𝒃𝒂) and 𝑎𝑎 ∈ L((𝒂 + 𝒃)𝒂) then

L(𝒂 + 𝒃𝒂) ≠ L((𝒂 + 𝒃)𝒂).

So, we can conclude
𝑀 +𝑁𝑀 ≠ (𝑀 +𝑁)𝑀.
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Discovering Laws for Regular Expressions
Example (Exercise 3.4.2.d)
Prove or disprove that (𝑀 +𝑁)∗𝑁 = (𝑀∗𝑁)∗.

Refutation
We replace the variables 𝑀 and 𝑁 by the concrete regular expressions 𝒂 and 𝒃 respectively.

(𝒂 + 𝒃)∗𝒃 ≟ (𝒂∗𝒃)∗.

Since 𝜀 ∉ (𝒂 + 𝒃)∗𝒃 and 𝜀 ∈ (𝒂∗𝒃)∗ then

(𝑀 +𝑁)∗𝑁 ≠ (𝑀∗𝑁)∗.
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Discovering Laws for Regular Expressions
Example (counter-example)
Extensions of the previous test beyond regular expressions may fail.

1. Add ∩ to the regular expression operators.
2. Test if 𝑀 ∩𝑁 ∩ 𝑃 = 𝑀 ∩𝑁 .
3. From 𝑀 = 𝒂, 𝑁 = 𝒃 and 𝑃 = 𝒄 and since

{𝑎} ∩ {𝑏} ∩ {𝑐} = ∅ = {𝑎} ∩ {𝑏},

we should conclude that the ‘property’ is true.
4. But, the ‘property’ is false. For example, if 𝑀 = 𝑁 = 𝒂 and 𝑃 = ∅ then

𝑀 ∩𝑁 ∩ 𝑃 ≠ 𝑀 ∩𝑁.

5. Therefore, the test is not valid!
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