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Propositions-as-Types Principle

Three correspondence's levels
Wadler [2015] introduces correspondence's levels by:

(i) Propositions-as-types

For each proposition in the logic there is a corresponding type in the programming
language—and vice versa.
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Propositions-as-Types Principle

Three correspondence's levels

Wadler [2015] introduces correspondence's levels by:

(i) Propositions-as-types
For each proposition in the logic there is a corresponding type in the programming
language—and vice versa.

(ii) Proofs-as-programs
For each proof of a given proposition, there is a program of the corresponding type—and
vice versa.

(iii) Simplification of proofs as evaluation of programs

For each way to simplify a proof there is a corresponding way to evaluate a program—and
vice versa.
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Propositions-as-Types Principle

Other names

P The Curry-Howard correspondence/isomorphism

[Sgrensen and Urzyczyn 2006, p. viii].
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Propositions-as-Types Principle

Other names
P The Curry-Howard correspondence/isomorphism

P The Brouwer - Heyting - Kolmogorov - Schénfinkel - Curry - Meredith - Kleene - Feys -
Godel - Lauchli - Kreisel - Tait - Lawvere - Howard - de Bruijn - Scott - Martin-Lof -
Girard - Reynolds - Stenlund - Constable - Coquand - Huet - --- - correspondencef

[Sgrensen and Urzyczyn 2006, p. viii].
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Natural Deduction (Conjunction and Implication)

Preliminaries
P Propositions: A, B, C, ...
P Judgement: Atrue (assert, proposition A is true)

P Form of the inference rules

J,o.J

" rule name
J

where J (conclusion) and J,, ..., J,, (premises) are all judgements.

P Types of inference rules: Introduction rules and elimination rules

Natural Deduction
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Natural Deduction (Conjunction and Implication)

Inference rules for conjunction

P Introduction rule (composing information)

Atrue B true

A A Btrue N

P Elimination rules (retrieving/using information)

A A Btrue AE, A A Btrue

AE
Atrue Btrue 2

Natural Deduction 8/22



Natural Deduction (Conjunction and Implication)

Inference rules for implication

P Introduction rule (hypothetical judgement)

[Atrue]’

Btrue i
A>S Btrue -

P Elimination rule (modus ponens)

A D Btrue Atrue
B true

DE

Natural Deduction 9/22



Natural Deduction (Conjunction and Implication)

Example
A proof that (AA B) D (B A A) true.

[A A Btrue]? [A A Btrue]’
Btrue Atrue
B A Atrue

D)
(ANB) D (BAA)true
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Typed Lambda Calculus (Product and Function Types)

P Types
O, T =0 =T
o X T
P \-terms
]\/f, N ==z
| Ae.M
| MN

| (M, N)|fst M |snd M
P Judgement: M : o (A-term M has type o)

Typed Lambda Calculus

function type
product type

variable
A-abstraction
application

pairs and projections
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Typed Lambda Calculus (Product and Function Types)

Type assignment rules for product types

P Introduction rule (pair formation)

M:o N:T
(M,N):oxT

x1

P Elimination rules (pair projections)

M:0XxT M:0xT
22! %K — 22! xE
fst M : o0 * B sndM : 71 o
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Typed Lambda Calculus (Product and Function Types)

Type assignment rules for function types

P Introduction rule (\-abstraction)

P Elimination rule (application)

M:0—T1 N :o
MN : 1

—E
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Typed Lambda Calculus (Product and Function Types)

Example
A proof that A h. (sndh, fsth): (o x 7) = (7 X 0).

[h:oxT| [h:ox 1]
_—xBE, —— xE,
sndh: T fsth:o

(sndh, fsth):7x 0o

x1

7

—1
Ah.(sndh, fsth): (o x 1) = (T X 0)
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Correspondence’s Levels

Example (propositions as types)

(implication) A D B as o — 7 (function type)
(conjunction) A A B as o x 1 (product type)
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Correspondence’s Levels

Example (proofs as programs)

[A A Btrue]’
Atrue
B A Atrue

D)
(AANB) D (BAA)true

[A A Btrue]’

Btrue

Proof

Correspondence’s Levels

[h:ox 1]
xE, — xE,;
sndh: T fsth:o

(sndh, fsth):7xo

[h:ox 7]

x1

7

—1

Ah.(sndh, fsth): (o x71) = (T X 0)

Program
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Proof Assistants

Description

‘Proof assistants are computer systems that allow a user to do mathematics on a
computer, but not so much the computing (numerical or symbolical) aspect of math-
ematics but the aspects of proving and defining. So a user can set up a mathematical
theory, define properties and do logical reasoning with them." [Geuvers 2009, p. 3]

Example

P Based on set theory: ISABELLE/ZFC, METAMATH and MIZAR
P Based on higher-order logic: HOL4, HOL LIGHT and ISABELLE/HOL
P Bases on type theories: AGDA, CoQ and LEAN.
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AcDA

What is AGDA?
P Dependently typed functional programming language

P Dependently typed interactive proof assistant
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AcDA

Long trandition: The ALF/AGDA family (Gothenburg - Sweden)
> ALF
» Acpa
P ALFA. Graphical interface for AGDA.
P AGDALIGHT. Experimental version of AGDA.

P> AcDA 2

P Based on Martin-L6f Type Theory (also known as Constructive Type Theory or Intu-
itionistic Type Theory).

P Direct manipulation of proofs-objects.
P Backends to HASKELL and JAVASCRIPT.
P Written in HASKELL.

P Interaction via EMACS.
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Further Reading

Propositions-as-types principle
P Wadler [2015]. Propositions as Types.
P Sgrensen and Urzyczyn [2006]. Lectures on the Curry-Howard Isomorphism.

AcpA
P Bove and Dybjer [2009]. Dependent Types at Work.
P Norell [2009]. Dependently Typed Programming in Agda.
P Stump [2016]. Verified Functional Programming in Agda.
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