
CM0081 Formal Languages and Automata
Introduction to Agda

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2024-1



Propositions-as-Types Principle
Three correspondence’s levels
Wadler [2015] introduces correspondence’s levels by:

(i) Propositions-as-types
For each proposition in the logic there is a corresponding type in the programming
language—and vice versa.

(ii) Proofs-as-programs
For each proof of a given proposition, there is a program of the corresponding type—and
vice versa.

(iii) Simplification of proofs as evaluation of programs
For each way to simplify a proof there is a corresponding way to evaluate a program—and
vice versa.

Propositions-as-Types Principle 2/22



Propositions-as-Types Principle
Three correspondence’s levels
Wadler [2015] introduces correspondence’s levels by:

(i) Propositions-as-types
For each proposition in the logic there is a corresponding type in the programming
language—and vice versa.

(ii) Proofs-as-programs
For each proof of a given proposition, there is a program of the corresponding type—and
vice versa.

(iii) Simplification of proofs as evaluation of programs
For each way to simplify a proof there is a corresponding way to evaluate a program—and
vice versa.

Propositions-as-Types Principle 3/22



Propositions-as-Types Principle
Three correspondence’s levels
Wadler [2015] introduces correspondence’s levels by:

(i) Propositions-as-types
For each proposition in the logic there is a corresponding type in the programming
language—and vice versa.

(ii) Proofs-as-programs
For each proof of a given proposition, there is a program of the corresponding type—and
vice versa.

(iii) Simplification of proofs as evaluation of programs
For each way to simplify a proof there is a corresponding way to evaluate a program—and
vice versa.

Propositions-as-Types Principle 4/22



Propositions-as-Types Principle
Other names

▶ The Curry-Howard correspondence/isomorphism

▶ The Brouwer - Heyting - Kolmogorov - Schönfinkel - Curry - Meredith - Kleene - Feys -
Gödel - Läuchli - Kreisel - Tait - Lawvere - Howard - de Bruijn - Scott - Martin-Löf -
Girard - Reynolds - Stenlund - Constable - Coquand - Huet - ⋯ - correspondence†

†[Sørensen and Urzyczyn 2006, p. viii].
Propositions-as-Types Principle 5/22



Propositions-as-Types Principle
Other names

▶ The Curry-Howard correspondence/isomorphism
▶ The Brouwer - Heyting - Kolmogorov - Schönfinkel - Curry - Meredith - Kleene - Feys -

Gödel - Läuchli - Kreisel - Tait - Lawvere - Howard - de Bruijn - Scott - Martin-Löf -
Girard - Reynolds - Stenlund - Constable - Coquand - Huet - ⋯ - correspondence†

†[Sørensen and Urzyczyn 2006, p. viii].
Propositions-as-Types Principle 6/22



Natural Deduction (Conjunction and Implication)
Preliminaries

▶ Propositions: 𝐴, 𝐵, 𝐶, …
▶ Judgement: 𝐴 true (assert, proposition 𝐴 is true)
▶ Form of the inference rules

𝐽1 … 𝐽𝑛 rule name𝐽
where 𝐽 (conclusion) and 𝐽1, … , 𝐽𝑛 (premises) are all judgements.

▶ Types of inference rules: Introduction rules and elimination rules

Natural Deduction 7/22



Natural Deduction (Conjunction and Implication)
Inference rules for conjunction

▶ Introduction rule (composing information)

𝐴 true 𝐵 true ∧I𝐴 ∧ 𝐵 true

▶ Elimination rules (retrieving/using information)

𝐴 ∧ 𝐵 true ∧E1𝐴 true
𝐴 ∧ 𝐵 true ∧E2𝐵 true

Natural Deduction 8/22



Natural Deduction (Conjunction and Implication)
Inference rules for implication

▶ Introduction rule (hypothetical judgement)

[𝐴 true]𝑖

⋮
𝐵 true ⊃I𝑖

𝐴 ⊃ 𝐵 true

▶ Elimination rule (modus ponens)

𝐴 ⊃ 𝐵 true 𝐴 true ⊃E𝐵 true

Natural Deduction 9/22



Natural Deduction (Conjunction and Implication)
Example
A proof that (𝐴 ∧ 𝐵) ⊃ (𝐵 ∧ 𝐴) true.

[𝐴 ∧ 𝐵 true]𝑖
∧E2𝐵 true

[𝐴 ∧ 𝐵 true]𝑖
∧E1𝐴 true

∧I
𝐵 ∧ 𝐴 true

⊃I𝑖
(𝐴 ∧ 𝐵) ⊃ (𝐵 ∧ 𝐴) true

Natural Deduction 10/22



Typed Lambda Calculus (Product and Function Types)

▶ Types

𝜎, 𝜏 ∶∶= 𝜎 → 𝜏 function type
| 𝜎 × 𝜏 product type

▶ 𝜆-terms

𝑀, 𝑁 ∶∶= 𝑥 variable
∣ 𝜆𝑥.𝑀 𝜆-abstraction
∣ 𝑀 𝑁 application
∣ ⟨ 𝑀 , 𝑁 ⟩ ∣ fst 𝑀 ∣ snd 𝑀 pairs and projections

▶ Judgement: 𝑀 ∶ 𝜎 (𝜆-term 𝑀 has type 𝜎)

Typed Lambda Calculus 11/22



Typed Lambda Calculus (Product and Function Types)
Type assignment rules for product types

▶ Introduction rule (pair formation)

𝑀 ∶ 𝜎 𝑁 ∶ 𝜏 ×I⟨ 𝑀 , 𝑁 ⟩ ∶ 𝜎 × 𝜏

▶ Elimination rules (pair projections)

𝑀 ∶ 𝜎 × 𝜏 ×E1fst 𝑀 ∶ 𝜎
𝑀 ∶ 𝜎 × 𝜏 ×E2snd 𝑀 ∶ 𝜏

Typed Lambda Calculus 12/22



Typed Lambda Calculus (Product and Function Types)
Type assignment rules for function types

▶ Introduction rule (𝜆-abstraction)

[𝑥 ∶ 𝜎]𝑖

⋮
𝑀 ∶ 𝜏 →I𝑖

𝜆𝑥.𝑀 ∶ 𝜎 → 𝜏

▶ Elimination rule (application)

𝑀 ∶ 𝜎 → 𝜏 𝑁 ∶ 𝜎 →E𝑀 𝑁 ∶ 𝜏

Typed Lambda Calculus 13/22



Typed Lambda Calculus (Product and Function Types)
Example
A proof that 𝜆 ℎ. ⟨ snd ℎ , fst ℎ ⟩ ∶ (𝜎 × 𝜏) → (𝜏 × 𝜎).

[ℎ ∶ 𝜎 × 𝜏]𝑖
×E2snd ℎ ∶ 𝜏

[ℎ ∶ 𝜎 × 𝜏]𝑖
×E1

fst ℎ ∶ 𝜎
×I

⟨ snd ℎ , fst ℎ ⟩ ∶ 𝜏 × 𝜎
→I𝑖

𝜆 ℎ. ⟨ snd ℎ , fst ℎ ⟩ ∶ (𝜎 × 𝜏) → (𝜏 × 𝜎)

Typed Lambda Calculus 14/22



Correspondence’s Levels
Example (propositions as types)

(implication) 𝐴 ⊃ 𝐵 as 𝜎 → 𝜏 (function type)
(conjunction) 𝐴 ∧ 𝐵 as 𝜎 × 𝜏 (product type)

Correspondence’s Levels 15/22



Correspondence’s Levels
Example (proofs as programs)

[𝐴 ∧ 𝐵 true]𝑖
∧E2𝐵 true

[𝐴 ∧ 𝐵 true]𝑖
∧E1𝐴 true

∧I
𝐵 ∧ 𝐴 true

⊃I𝑖
(𝐴 ∧ 𝐵) ⊃ (𝐵 ∧ 𝐴) true

Proof

[ℎ ∶ 𝜎 × 𝜏]𝑖
×E2snd ℎ ∶ 𝜏

[ℎ ∶ 𝜎 × 𝜏]𝑖
×E1

fst ℎ ∶ 𝜎
×I

⟨ snd ℎ , fst ℎ ⟩ ∶ 𝜏 × 𝜎
→I𝑖

𝜆 ℎ. ⟨ snd ℎ , fst ℎ ⟩ ∶ (𝜎 × 𝜏) → (𝜏 × 𝜎)

Program

Correspondence’s Levels 16/22



Proof Assistants
Description

‘Proof assistants are computer systems that allow a user to do mathematics on a
computer, but not so much the computing (numerical or symbolical) aspect of math-
ematics but the aspects of proving and defining. So a user can set up a mathematical
theory, define properties and do logical reasoning with them.’ [Geuvers 2009, p. 3]

Example
▶ Based on set theory: Isabelle/ZFC, Metamath and Mizar
▶ Based on higher-order logic: HOL4, HOL Light and Isabelle/HOL
▶ Bases on type theories: Agda, Coq and Lean.

Proof Assistants 17/22



Agda
What is Agda?

▶ Dependently typed functional programming language
▶ Dependently typed interactive proof assistant

Agda 18/22



Agda
Long trandition: The ALF/Agda family (Gothenburg - Sweden)

▶ ALF
▶ Agda
▶ Alfa. Graphical interface for Agda.
▶ AgdaLight. Experimental version of Agda.
▶ Agda 2

▶ Based on Martin-Löf Type Theory (also known as Constructive Type Theory or Intu-
itionistic Type Theory).

▶ Direct manipulation of proofs-objects.
▶ Backends to Haskell and JavaScript.
▶ Written in Haskell.
▶ Interaction via Emacs.

Agda 19/22



Further Reading
Propositions-as-types principle

▶ Wadler [2015]. Propositions as Types.
▶ Sørensen and Urzyczyn [2006]. Lectures on the Curry-Howard Isomorphism.

Agda
▶ Bove and Dybjer [2009]. Dependent Types at Work.
▶ Norell [2009]. Dependently Typed Programming in Agda.
▶ Stump [2016]. Verified Functional Programming in Agda.

Further Reading 20/22



Demo



References
Bove, A. and Dybjer, P. (2009). Dependent Types at Work. In: LerNet ALFA Summer School 2008.
Ed. by Bove, A., Soares Barbosa, L., Pardo, A. and Sousa Pinto, J. Vol. 5520. Lecture Notes in
Computer Science. Springer, pp. 57–99. doi: 10.1007/978-3-642-03153-3_2 (cit. on p. 20).
Geuvers, H. (2009). Proof Assistants: History, Ideas and Future. Sadhana 34.1, pp. 3–25. doi:
10.1007/s12046-009-0001-5 (cit. on p. 17).
Norell, U. (2009). Dependently Typed Programming in Agda. In: Advanced Functional Program-
ming (AFP 2008). Ed. by Koopman, P., Plasmeijer, R. and Swierstra, D. Vol. 5832. Lecture Notes
in Computer Science. Springer, pp. 230–266. doi: 10.1007/978-3-642-04652-0_5 (cit. on p. 20).
Sørensen, M.-H. and Urzyczyn, P. (2006). Lectures on the Curry-Howard Isomorphism. Vol. 149.
Studies in Logic and the Foundations of Mathematics. Elsevier (cit. on pp. 5, 6, 20).
Stump, A. (2016). Verified Functional Programming in Agda. ACM and Morgan & Claypool. doi:
10.1145/2841316 (cit. on p. 20).
Wadler, P. (2015). Propositions as Types. Communications of the ACM 58.12, pp. 75–84. doi:
10.1145/2699407 (cit. on pp. 2–4, 20).

References 22/22

https://doi.org/10.1007/978-3-642-03153-3_2
https://doi.org/10.1007/s12046-009-0001-5
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1145/2841316
https://doi.org/10.1145/2699407

	Propositions-as-Types Principle
	Natural Deduction
	Typed Lambda Calculus
	Correspondence's Levels
	Proof Assistants
	Agda
	Further Reading
	References

