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Preliminaries

Conventions

P The number and page numbers assigned to chapters, examples, exercises, figures, quotes,

sections and theorems on these slides correspond to the numbers assigned in the
textbook [Hopcroft, Motwani and Ullman (1979) 2007].

P The natural numbers include the zero, that is, N = {0,1,2,... }.
P The power set of a set A, that is, the set of its subsets, is denoted by P A.
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Undecidability

Recall

P A language L is recursively enumerable iff exists a Turing machine M such that
L =L(M).
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Undecidability

Recall
P A language L is recursively enumerable iff exists a Turing machine M such that
L =L(M).
P A language L is recursive iff exists a Turing machine M such that
(i) L =L(M) and
(i) M always halt (even if it does not accept).
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Undecidability

Recall
P A language L is recursively enumerable iff exists a Turing machine M such that
L =L(M).
P A language L is recursive iff exists a Turing machine M such that
(i) L =L(M) and
(i) M always halt (even if it does not accept).

Definition
A language L is undecidable iff L is not recursive.
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Why ‘Recursive’?

P The term ‘recursive’ as synonym for ‘decidable’ comes from Mathematics (prior to
computers).
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Why ‘Recursive’?

P The term ‘recursive’ as synonym for ‘decidable’ comes from Mathematics (prior to
computers).

P Equivalent formalization to Turing-machine computability based on recursive functions.

P A function is recursive if only if it is Turing-machine computable (see, e.g. [Boolos,
Burges and Jeffrey (1974) 2007], [Hermes (1961) 1969] or [Kleene (1952) 1974]).
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Why ‘Recursive’?

P The term ‘recursive’ as synonym for ‘decidable’ comes from Mathematics (prior to
computers).

P Equivalent formalization to Turing-machine computability based on recursive functions.
P A function is recursive if only if it is Turing-machine computable (see, e.g. [Boolos,
Burges and Jeffrey (1974) 2007], [Hermes (1961) 1969] or [Kleene (1952) 1974]).

P Recursive problem: ‘it is sufficiently simple that | can write a recursive function to solve it,
and the function always finishes.” [p. 385]
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Codification of Turing Machines

Convention
The Turing machine M is of the form:

M = ({QD R Qn}v {07 1}a {X13X23X33 7Xm}v 57 di Ba {Q2})a

where X; =0, X, =1 and X; = B. Moreover, D; = L and D, = R.
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Codification of Turing Machines

Convention
The Turing machine M is of the form:

M = <{QD R Qn}v {07 1}a {X13X23X33 7Xm}v 57 di Ba {Q2})a

where X; =0, X, =1 and X; = B. Moreover, D; = L and D, = R.

Codification of an instruction
The instruction d(q;, X;) = (g4, X}, D,,,) is codified by

0'10710%10'10™.
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Codification of Turing Machines

Codification of a Turing machine
Let 'y, O, ..., C, be the codifications of the instructions of a Turing machine M. The codific-
ation of M is defined by

M = C,11C,11...11C

p*
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Codification of Turing Machines

Codification of a Turing machine
Let 'y, O, ..., C, be the codifications of the instructions of a Turing machine M. The codific-
ation of M is defined by

M = C111C,11...11C,,.
Observation
Note that there are other possible codes for M.
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Codification of Turing Machines

Enumeration of the binary strings

We ordered the binary strings by [length-]lexicographical order (strings are ordered by length,
and strings of equal length are ordered lexicographically).

(continued on next slide)
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Codification of Turing Machines

Enumeration of the binary strings (continuation)

If w is a binary string, we call w the i-th string where 1w is the binary integer 7. We refer to

the i-th string as w;,.

e—1, —=1,
0—10, — 2,
1—11, — 3,
00 — 100, — 4,
01 — 101, — 5,
10 — 110, — 6,

Codification of Turing Machines
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Codification of Turing Machines

i-th Turing machine
Given a Turing machine M with code w;, we can now associate a natural number to it: M is
the i-th Turing machine, referred to as M.
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Codification of Turing Machines

i-th Turing machine
Given a Turing machine M with code w;, we can now associate a natural number to it: M is
the i-th Turing machine, referred to as M.

Convention
If w; is not a valid Turing machine code, we shall take M to be the Turing machine with one

state and no transitions, that is,
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Cantor’s Diagonalisation Proof

Theorem
The open interval (0, 1) is an uncountable (non-enumerable) set.

(continued on next slide)
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Cantor’s Diagonalisation Proof

Proof.
Let's suppose (0, 1) is (infinite) countable.

Let » = 0.d,dyd; ... € (0,1), where

d — 4, ifdy # 4
o 5, |f dZL — 4.

The number r does not belong to the above enumeration. Therefore the interval (0,1) is an

uncountable set.

The Diagonalization Language
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The Diagonalization Language

Definition
Let ¥ = {0, 1}. The diagonalization language is defined by

Ly={w; € ¥ |w; ¢ L(M,) }.
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The Diagonalization Language

Definition
Let ¥ = {0, 1}. The diagonalization language is defined by

Ly={w; € ¥ |w; ¢ L(M,) }.

v o {1, if w; € L(M,);
1 2 3 4 Y 0, ifw; ¢L(M,).
110 1 1 0
o 2110 ] o B
i 310 1 1 0 anguage L(M;)'s vector: i-th row
411 1 0 0 L4: Complement of the diagonal

Is it possible that L, be in a row?
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The Diagonalization Language

Theorem 9.2
The language L is not recursively enumerable.

Proof by contradiction (proof of negation)
Whiteboard.
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