CM0246 Discrete Structures Relations and Their Properties

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2014-2

Preliminaries

Convention

The number assigned to chapters, examples, exercises, figures, sections, and theorems on these slides correspond to the numbers assigned in the textbook (Rosen 2004).

Recall the definition of Cartesian product

Let A and B be sets. The Cartesian product of A and B is

$$A \times B = \{ (a, b) \mid a \in A \land b \in B \}.$$

Example

Let $A = \{a, b\}$ and $B = \{1, 2\}$. Then

$$A \times B = \{(a, 1), (a, 2), (b, 1), (b, 2)\}.$$

Definition

Let A and B be sets. A **binary relation** from A to B is a subset of $A \times B$.

Definition

Let A and B be sets. A **binary relation** from A to B is a subset of $A \times B$.

Example (trivial relations)

 $R = \emptyset$ and $R = A \times B$ are relations from A to B.

Definition

Let A and B be sets. A **binary relation** from A to B is a subset of $A \times B$.

Example (trivial relations)

 $R = \emptyset$ and $R = A \times B$ are relations from A to B.

Example

See whiteboard.

Definition

Let A and B be sets. A **binary relation** from A to B is a subset of $A \times B$.

```
Example (trivial relations)
```

 $R = \emptyset$ and $R = A \times B$ are relations from A to B.

Example

See whiteboard.

Notation

We shall use $(a, b) \in R$ and a R b.

The slides for the 6th ed. of Rosen's textbook use $\langle a, b \rangle$.

Relations and functions

The functions are relations with additional constraints.

Definition

A relation on a set A is a relation from A to A.

Definition

A **relation on** a set A is a relation from A to A.

Example

Some relations on $\mathbb{Z}:$

$$R_{1} = \{ (a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a \leq b \},\$$

$$R_{2} = \{ (a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a > b \},\$$

$$R_{3} = \{ (a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a = b \lor a = -b \},\$$

$$R_{4} = \{ (a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a = b \},\$$

$$R_{5} = \{ (a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a = b + 1 \},\$$

$$R_{6} = \{ (a, b) \in \mathbb{Z} \times \mathbb{Z} \mid a + b \leq 3 \}.$$

Definition

Let R be a relation on a set A. The relation R is

reflexive iff $\forall x(xRx)$,

symmetric iff $\forall x \forall y (xRy \rightarrow yRx)$,

antisymmetric iff $\forall x \forall y ((xRy \land yRx) \rightarrow x = y)$ and

transitive iff $\forall x \forall y \forall z ((xRy \land yRz) \rightarrow xRz)$.

Properties of Relations

Example

See slides § 8.1, p. 5 for the 6th ed. of Rosen's textbook.

See slides § 8.1, pp. 6-8 for the 6th ed. of Rosen's textbook.

Definition

Let R be a relation from A to B and let S be a relation from B to C.

The **composition** of S with R, denoted $S \circ R$, is the relation from A to C where if $(a, b) \in R$ and $(b, c) \in S$ then $(a, c) \in S \circ R$.

Example (composition of relations)

Let $A = \{1, 2, 3\}$, $B = \{1, 2, 3, 4\}$ and $C = \{0, 1, 2\}$.

Let R and S be the relations from A to B and B to C, respectively, given by

$$R = \{(1, 1), (1, 4), (2, 3), (3, 1), (3, 4)\},\$$

$$S = \{(1, 0), (2, 0), (3, 1), (3, 2), (4, 1)\},\$$

then $S \circ R$ is the relation from A to C, given by

$$S \circ R = \{(1,0), (1,1), (2,1), (2,2), (3,0), (3,1)\}.$$

Problem 31 (p. 448)

Let R be the relation on the set of people consisting of pairs (a, b), where a is a parent of b. Let S be the relation on the set of people consisting of pairs (a, b), where a and b are siblings (brothers or sisters).

Problem 31 (p. 448)

Let R be the relation on the set of people consisting of pairs (a, b), where a is a parent of b. Let S be the relation on the set of people consisting of pairs (a, b), where a and b are siblings (brothers or sisters).

What are $S \circ R$ and $R \circ S$?

Problem 31 (p. 448)

Let R be the relation on the set of people consisting of pairs (a, b), where a is a parent of b. Let S be the relation on the set of people consisting of pairs (a, b), where a and b are siblings (brothers or sisters).

What are $S \circ R$ and $R \circ S$?

• $(a,b) \in S \circ R$ if exists c such that $(a,c) \in R$ (a is parent of c) and $(c,b) \in S$ (c is sibling of b), that is

 $S \circ R = \left\{ \, (a,b) \mid a \text{ is a parent of } b \text{ and } b \text{ has a sibling} \, \right\}.$

Problem 31 (p. 448)

Let R be the relation on the set of people consisting of pairs (a, b), where a is a parent of b. Let S be the relation on the set of people consisting of pairs (a, b), where a and b are siblings (brothers or sisters).

What are $S \circ R$ and $R \circ S$?

• $(a,b) \in S \circ R$ if exists c such that $(a,c) \in R$ (a is parent of c) and $(c,b) \in S$ (c is sibling of b), that is

 $S \circ R = \{ (a, b) \mid a \text{ is a parent of } b \text{ and } b \text{ has a sibling} \}.$

• $(a,b) \in R \circ S$ if exists c such $(a,c) \in S$ (a is sibling of c) and $(c,b) \in R$ (c is parent of b), that is

 $R \circ S = \left\{ \left(a, b \right) \mid a \text{ is an aunt or uncle of } b \right\}.$

Definition

Let R be a relation on the set A. The **powers** $R^n,$ for $n\in\mathbb{Z}^+$ are defined recursively by

$$R^1 = R,$$
$$R^{n+1} = R^n \circ R.$$

Definition

Let R be a relation on the set A. The **powers** R^n , for $n \in \mathbb{Z}^+$ are defined recursively by

$$R^1 = R,$$
$$R^{n+1} = R^n \circ R.$$

Example

See slides § 8.1, pp. 9-10 for the 6th ed. of Rosen's textbook.

Theorem 1 (p. 446)

Let R be a relation on a set A. The relation R is transitive iff $R^n \subseteq R$ for $n \in \mathbb{Z}^+$.

Proved on next slides

Proof of \Rightarrow (if R is transitive implies $R^n \subseteq R$ for $n \in \mathbb{Z}^+$).

By induction on $n \in \mathbb{Z}^+$.

Proof of \Rightarrow (if R is transitive implies $R^n \subseteq R$ for $n \in \mathbb{Z}^+$).

By induction on $n \in \mathbb{Z}^+$.

1. P(n): if R is transitive implies $R^n \subseteq R$.

Proof of \Rightarrow (if R is transitive implies $R^n \subseteq R$ for $n \in \mathbb{Z}^+$).

By induction on $n \in \mathbb{Z}^+$.

- 1. P(n): if R is transitive implies $R^n \subseteq R$.
- 2. Basis step P(1): $R^1 = R \subseteq R$

Proof of \Rightarrow (if R is transitive implies $R^n \subseteq R$ for $n \in \mathbb{Z}^+$).

By induction on $n \in \mathbb{Z}^+$.

- 1. P(n): if R is transitive implies $R^n \subseteq R$.
- 2. Basis step P(1): $R^1 = R \subseteq R$
- 3. Inductive step:

Inductive hypothesis P(k): if R is transitive implies $R^k \subseteq R$

Proof of \Rightarrow (if R is transitive implies $R^n \subseteq R$ for $n \in \mathbb{Z}^+$).

By induction on $n \in \mathbb{Z}^+$.

- 1. P(n): if R is transitive implies $R^n \subseteq R$.
- 2. Basis step P(1): $R^1 = R \subseteq R$
- 3. Inductive step:

Inductive hypothesis P(k): if R is transitive implies $R^k \subseteq R$ Let's prove P(k+1):

Proof of \Rightarrow (if R is transitive implies $R^n \subseteq R$ for $n \in \mathbb{Z}^+$).

By induction on $n \in \mathbb{Z}^+$.

- 1. P(n): if R is transitive implies $R^n \subseteq R$.
- 2. Basis step P(1): $R^1 = R \subseteq R$
- 3. Inductive step: Inductive hypothesis P(k): if R is transitive implies $R^k \subseteq R$ Let's prove P(k + 1): 3.1 Let $(a, b) \in R^{k+1}$.

Proof of \Rightarrow (if R is transitive implies $R^n \subseteq R$ for $n \in \mathbb{Z}^+$).

By induction on $n \in \mathbb{Z}^+$.

- 1. P(n): if R is transitive implies $R^n \subseteq R$.
- 2. Basis step P(1): $R^1 = R \subseteq R$
- 3. Inductive step:

Inductive hypothesis P(k): if R is transitive implies $R^k\subseteq R$ Let's prove P(k+1):

- 3.1 Let $(a, b) \in R^{k+1}$.
- 3.2 Exists $x \in A$ such that $(a, x) \in R^k$ and $(x, b) \in R$ (definition of \circ).

Proof of \Rightarrow (if R is transitive implies $R^n \subseteq R$ for $n \in \mathbb{Z}^+$).

By induction on $n \in \mathbb{Z}^+$.

- 1. P(n): if R is transitive implies $R^n \subseteq R$.
- 2. Basis step P(1): $R^1 = R \subseteq R$
- 3. Inductive step:

Inductive hypothesis P(k): if R is transitive implies $R^k\subseteq R$ Let's prove P(k+1):

3.1 Let
$$(a, b) \in R^{k+1}$$

- 3.2 Exists $x \in A$ such that $(a, x) \in R^k$ and $(x, b) \in R$ (definition of \circ).
- 3.3 $(a, x) \in R$ (IH).

Proof of \Rightarrow (if R is transitive implies $R^n \subseteq R$ for $n \in \mathbb{Z}^+$).

By induction on $n \in \mathbb{Z}^+$.

- 1. P(n): if R is transitive implies $R^n \subseteq R$.
- 2. Basis step P(1): $R^1 = R \subseteq R$
- 3. Inductive step:

Inductive hypothesis P(k): if R is transitive implies $R^k\subseteq R$ Let's prove P(k+1):

3.1 Let
$$(a, b) \in R^{k+1}$$

- 3.2 Exists $x \in A$ such that $(a, x) \in R^k$ and $(x, b) \in R$ (definition of \circ).
- **3.3** $(a, x) \in R$ (IH).
- 3.4 If $(a, x) \in R$ and $(x, b) \in R$ then $(a, b) \in R$ (R is transitive).

Proof of \Rightarrow (if R is transitive implies $R^n \subseteq R$ for $n \in \mathbb{Z}^+$).

By induction on $n \in \mathbb{Z}^+$.

- 1. P(n): if R is transitive implies $R^n \subseteq R$.
- 2. Basis step P(1): $R^1 = R \subseteq R$
- 3. Inductive step:

Inductive hypothesis P(k): if R is transitive implies $R^k\subseteq R$ Let's prove P(k+1):

3.1 Let
$$(a,b) \in \mathbb{R}^{k+1}$$

- 3.2 Exists $x \in A$ such that $(a, x) \in R^k$ and $(x, b) \in R$ (definition of \circ).
- 3.3 $(a, x) \in R$ (IH).
- 3.4 If $(a, x) \in R$ and $(x, b) \in R$ then $(a, b) \in R$ (R is transitive). 3.5 $R^{k+1} \subseteq R$.

Continued on next slide

Proof of \leftarrow (if $\mathbb{R}^n \subseteq \mathbb{R}$ for $n \in \mathbb{Z}^+$ implies \mathbb{R} is transitive).

- 1 Suppose that $(a,b) \in R$ and $(b,c) \in R$.
- $2 \quad (a,c) \in R^2.$
- $3 \quad (a,c) \in R.$
- 4 Therefore, R is transitive.

(def. of R^2) ($R^2 \subseteq R$)

Definition

Let R be a relation from A to B. The **inverse relation** from B to A, denoted by $R^{-1},$ is the set of ordered pairs

$$R^{-1} = \{ (b, a) \in B \times A \mid (a, b) \in R \}.$$

Definition

Let R be a relation from A to B. The **complementary relation** from A to B, denoted by \overline{R} , is the set of ordered pairs

 $\overline{R} = \left\{ \, (a,b) \in A \times B \mid (a,b) \notin R \, \right\}.$

References

Rosen, K. H. (2004). Matemática Discreta y sus Aplicaciones. Trans. by Pérez Morales, J. M., Moro Carreño, J., Lías Quintero, A. I. and Ramos Alonc, P. A. 5th ed. McGraw-Hill (cit. on p. 2).