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Preliminaries

Convention
The number assigned to chapters, examples, exercises, figures, sections,
and theorems on these slides correspond to the numbers assigned in the
textbook (Rosen 2004).
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Introduction

We can use relations to order some or all the elements of a set.

Example
Some order relations.

The words in a dictionary

(a, b) ∈ R if a comes before b in the dictionary.
Academic genealogical descent

(a, b) ∈ R if a was the supervisor of the thesis of b.
Schedule projects

(a, b) ∈ R if a is a task that must be completed before the task b
begins.
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Partial Orders

Definition
A relation on a set A is a (non-strict) partial order iff it is reflexive,
antisymmetric and transitive.

Definition
Let R be a partial order on a set A, then (A, R) is called a partially ordered
set (or poset).

Example
(Z, ≤) is a poset.
(P (A), ⊆) is a poset.
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Partial Orders

Definition
Let a, b ∈ Z with a ̸= 0. The divisibility relation, denoted by |, is defined by

a | b
def= ∃c(b = ac).

If a | b, we say that a divides b.

Example
Whiteboard.

Example
(Z+, |) is a poset.
Is (N, |) a poset?
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Partial Orders

Problem 6 (p. 492)
Let (A, R) be a poset. Prove that (S, R−1) is also a poset, where R−1 is
the inverse of R. The poset (S, R−1) is called the dual of (S, R).
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Partial Orders

Notation
⪯: Denotes an arbitrary partial order

a ≺ b
def= a ⪯ b ∧ a ̸= b

(A, ⪯): Denotes an arbitrary poset
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Comparable Elements

Definition
Let (A, ⪯) be a poset. The elements a, b ∈ A are called comparable iff
either a ⪯ b or b ⪯ a.

Example
Whiteboard
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Total Orders

Definition
If (A, ⪯) is a poset and every two elements of A are comparable, A is called
a totally ordered set (or linearly ordered set). The relation ⪯ is called a
total order (or a linear order).

Example
(Z, ≤) is a totally ordered set.
(Z+, |) is a not totally order set.
Is (P (A), ⊆) a totally ordered set?
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Well-Ordered Sets

Definition
An element a ∈ A is the least element (mínimo) of a poset (A, ⪯) iff a ⪯ b
for all b ∈ A.

Definition
Let (A, ⪯) be a totally ordered set. The set (A, ⪯) is a well-ordered set
iff every non-empty subset of A has a least element.

Example
(N, ≤) is a well-ordered set.
(N, ≥) is not a well-ordered set.
Is (Z, ≤) a well-ordered set?
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Hasse Diagrams

Example
Digraph for the relation { (a, b) | a ≤ b } on {1, 2, 3, 4}.

See whiteboard.
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Hasse Diagrams

Constructing a Hasse diagram
1. Construct a digraph representation for the poset (A, ⪯).
2. Remove these loops.
3. Remove all edges that must be in the partial ordering because of the

presence of other edges and transitivity.
4. Arrange each edge so that its initial vertex is below its terminal vertex.
5. Remove all the arrows on the directed edges.
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Hasse Diagrams

Example
Hasse diagram for the poset ({a, b, c}, ⊆).

∅

{c}
{a} {b}

{a, c}
{a, b}

{b, c}

{a, b, c}
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Hasse Diagrams

Exercise
Draw the Hasse diagram for the poset ({1, 2, 3, 4, 6, 8, 12}, |).

1

2 3

4 6

8 12
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Lexicographic Ordering

Example
Let ⪯ be relation on Z × Z defined by

(a1, b1) ⪯ (a2, b2) def= a1 < a2 or (a1 = a2 and b1 ≤ b2).

Is (3, 100) ⪯ (4, 4)?

Is (3, 5) ⪯ (3, 4)?

Is (Z × Z, ⪯) a poset?

Is (Z × Z, ⪯) a totally ordered set?
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Lexicographic Ordering

Definition
Let (A, ⪯A) and (B, ⪯B) be two posets. The lexicographic ordering ⪯
on A × B is defined by:

(a1, b1) ⪯ (a2, b2) def= a1 ≺A a2 or (a1 = a2 and b1 ⪯B b2).

Example
Previous example
Whiteboard
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Lexicographic Ordering

Definition
Let (A1, ⪯1), . . . , (An, ⪯n) be n posets. The lexicographic ordering ⪯ on
A1 × · · · × An is defined by:

(a1, . . . , an) ⪯ (b1, . . . , bn) def= (∃m > 0)(∀i < m)(ai = bi ∧ am ⪯m bm),

that is, if one of the terms am ⪯m bm and all the preceding terms are equal.
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Lexicographic Ordering

Example
Let Σ be an alphabet defined by Σ = {0, 1}. The lexicographical ordering
on (Σ, ≤) × (Σ, ≤) × (Σ, ≤) is given by

000
001
010
011
100
101
110
111
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Lexicographic Ordering

Definition
Let Σ∗ be the set of all words (finite sequence of symbols) on an alphabet Σ,
including the empty word denoted by λ.

A lexicographic ordering on Σ∗ can be defined by: if the words are the
same length, use the lexicographic ordering of n posets, else the shorter
sequence should be padded at the end with enough "blanks" (a special
symbol that is treated as smaller than every element of Σ.
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Lexicographic Ordering

Example
Let Σ be an alphabet defined by Σ = {0, 1}. The lexicographical ordering
on { w ∈ Σ∗ | l(w) ≤ 3 } is given by

ϵ

0

1

λ

0
00

000
001
01

010
011

1
10

100
101
11

110
111

λϵϵϵ

0ϵϵ
00ϵ
000
001
01ϵ
010
011
1ϵϵ
10ϵ
100
101
11ϵ
110
111
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Product Order

Definition
Let (A, ⪯A) and (B, ⪯B) be two posets. The product order ⪯ on A × B
is defined by:

(a1, b1) ⪯ (a2, b2) def= a1 ⪯A a2 and b1 ⪯B b2.

Example
Whiteboard.
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Definition
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Product Order

Problem 33 (p. 494)
Prove that the product order of two posets is a poset.

Proof.
Let (A, ⪯A) and (B, ⪯B) be two posets. We need to prove that (A×B, ⪯)
is a poset, where ⪯ is the product order on A × B.

Reflexivity: (a, b) ⪯ (a, b), for all a ∈ A and b ∈ B. Whiteboard.

Antisymmetry: If (a1, b1) ⪯ (a2, b2) and (a2, b2) ⪯ (a1, b1) then
(a1, b1) = (a2, b2), for all a1, a2 ∈ A and b1, b2 ∈ B. Whiteboard.

Transitivity: If (a1, b1) ⪯ (a2, b2) and (a2, b2) ⪯ (a3, b3) then
(a1, b1) ⪯ (a3, b3), for all a1, a2, a3 ∈ A and b1, b2, b3 ∈ B.
Whiteboard.
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Product Order

Example
Hasse diagram for the product order of the posets ({1, 2, 3}, ≤) and
({1, 2, 3}, ≥).

(1, 3)

(2, 3) (1, 2)

(2, 2)
(3, 3) (1, 1)

(3, 2) (2, 1)

(3, 1)
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Notable Elements
Let (A, ⪯) be a poset.

Definition
An element a ∈ A is the greatest element (máximo) of (A, ⪯) iff b ⪯ a
for all b ∈ A.

Definition
An element a ∈ A is the least element (mínimo) iff a ⪯ b for all b ∈ A.

Definition
An element a ∈ A is a maximal of (A, ⪯) if there is no b ∈ A such that
a ≺ b.

Definition
An element a ∈ A is a minimal (A, ⪯) if there is no b ∈ A such that b ≺ a.
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Notable Elements

Example

a

b

dc e

(a)

c

a b

d e

(b)

c

a b

d

(c)
a

b c

d

(d)

Fig. Least element Greatest element Maximals Minimals
(a) a c, d, e a
(b) d, e a, b
(c) d d a, b
(d) a d d a
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Notable Elements
Let (S, ⪯) be a poset and let A ⊆ S.

Definition
Let u ∈ S be an element such that a ⪯ u for all elements a ∈ A, then u is
an upper bound of A.

Definition
Let l ∈ S be an element such that l ⪯ a for all elements a ∈ A, then l is a
lower bound of A.

Example (using intervals of real numbers)
Whiteboard.
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Notable Elements

Example

A = {a, b, c}
Upper bounds: {e, f, j, h}
Lower bounds: {a}

A = {j, h}
No upper bounds.
Lower bounds: {a, b, c, d, e, f}

A = {a, c, d, f}
Upper bounds: {f, h, j}
Lower bounds: {a} a

b c

d e

fg

h j
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Notable Elements

Definition
An element x is the supremum (or the least upper bound) of the subset A,
denoted by sup(A), iff x is an upper bound that is less than every other
upper bound of A.

Definition
An element y is the infimum (or the greatest lower bound) of the sub-
set A, denoted by inf(A), iff y is an lower bound that is greater than every
other lower bound of A.

Example (Using intervals of real numbers)
Whiteboard.
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Whiteboard.
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Notable Elements

Definition
An element x is the supremum (or the least upper bound) of the subset A,
denoted by sup(A), iff x is an upper bound that is less than every other
upper bound of A.

Definition
An element y is the infimum (or the greatest lower bound) of the sub-
set A, denoted by inf(A), iff y is an lower bound that is greater than every
other lower bound of A.

Example (Using intervals of real numbers)
Whiteboard.
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Notable Elements

Example

A = {b, d, g}

Upper bounds: {g, h}
sup(A) = g
Lower bounds: {a, b}
inf(A) = b

a

b c

d e

fg

h j

Partial Orders 65/68
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Problem 26 (p. 493)
Answer these questions for the partial order represented by this Hasse dia-
gram.

Maximals? {l, m}

Minimals? {a, b, c}

Greatest element? Doesn’t exist

Least element? Doesn’t exist

Upper bounds of {a, b, c}? {k, l, m}

sup({a, b, c})? k

Lower bounds of {f, g, h}? Don’t exist

inf({f, g, h})? Doesn’t exist
a b c

d e f

i h g

j k

l m
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Notable Elements

Problem 27 (p. 492)
Answer these questions for the poset ({3, 5, 9, 15, 24, 45}, |).

Maximals? {24, 45}

Minimals? {3, 5}

Greatest element? Doesn’t exist

Least element? Doesn’t exist

Upper bounds of {3, 5}? {15, 45}

sup({3, 5})? 15

Lower bounds of {15, 45}? {3, 5, 15}

inf({15, 45})? 15

5 3

15 9 24

45
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