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Preliminaries

Convention
The number assigned to chapters, examples, exercises, figures, sections,
and theorems on these slides correspond to the numbers assigned in the
textbook (Rosen 2004).

Mathematical Induction 2/41



Motivation

Exercise
Conjecture a formula for the sum of the first n positive odd integers.

Question
Let P (n) be a propositional function. How can we proof that P (n) is true
for all n ∈ Z+?
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Principle of Mathematical Induction

Proof by mathematical induction
Let P (n) be a propositional function.

To prove that P (n) is true for all n ∈ Z+, we must make two proofs:
Basis step: Prove P (1)

Inductive step: Prove P (k) → P (k + 1) for all k ∈ Z+

P (k) is called the inductive hypothesis.

Mathematical Induction 5/41



Principle of Mathematical Induction

Proof by mathematical induction
Let P (n) be a propositional function.

To prove that P (n) is true for all n ∈ Z+, we must make two proofs:
Basis step: Prove P (1)
Inductive step: Prove P (k) → P (k + 1) for all k ∈ Z+

P (k) is called the inductive hypothesis.

Mathematical Induction 6/41



Principle of Mathematical Induction

How mathematical induction works†314 5 / Induction and Recursion

FIGURE 2 Illustrating How Mathematical Induction Works Using Dominoes.

WAYS TO REMEMBER HOW MATHEMATICAL INDUCTION WORKS Thinking of
the infinite ladder and the rules for reaching steps can help you remember how mathematical
induction works. Note that statements (1) and (2) for the infinite ladder are exactly the basis
step and inductive step, respectively, of the proof that P(n) is true for all positive integers n,
where P(n) is the statement that we can reach the nth rung of the ladder. Consequently, we can
invoke mathematical induction to conclude that we can reach every rung.

Another way to illustrate the principle of mathematical induction is to consider an infinite
row of dominoes, labeled 1, 2, 3, . . . , n, . . . , where each domino is standing up. Let P(n) be
the proposition that domino n is knocked over. If the first domino is knocked over—i.e., if P(1)

is true—and if, whenever the kth domino is knocked over, it also knocks the (k + 1)st domino
over—i.e., if P(k)→ P(k + 1) is true for all positive integers k—then all the dominoes are
knocked over. This is illustrated in Figure 2.

Why Mathematical Induction is Valid

Why is mathematical induction a valid proof technique? The reason comes from the well-
ordering property, listed in Appendix 1, as an axiom for the set of positive integers, which
states that every nonempty subset of the set of positive integers has a least element. So, suppose
we know that P(1) is true and that the proposition P(k)→P(k + 1) is true for all positive
integers k. To show that P(n) must be true for all positive integers n, assume that there is at
least one positive integer for which P(n) is false. Then the set S of positive integers for which
P(n) is false is nonempty. Thus, by the well-ordering property, S has a least element, which
will be denoted by m. We know that m cannot be 1, because P(1) is true. Because m is positive
and greater than 1, m− 1 is a positive integer. Furthermore, because m− 1 is less than m, it is
not in S, so P(m− 1) must be true. Because the conditional statement P(m− 1)→P(m) is
also true, it must be the case that P(m) is true. This contradicts the choice of m. Hence, P(n)

must be true for every positive integer n.

The Good and the Bad of Mathematical Induction

An important point needs to be made about mathematical induction before we commence a
study of its use. The good thing about mathematical induction is that it can be used to prove

†Figure source: (Rosen 2012, § 5.1, Fig. 2).
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Principle of Mathematical Induction

Definition (principle of mathematical induction)
Inference rule version:

P (1)

[P (k)]

...
P (k + 1)

(PMI)
P (n)

Axiom (or theorem) version: Let P be a propositional function (predicate).
Then

[P (1) ∧ ∀k(P (k) → P (k + 1)] → ∀nP (n) (PMI)
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Principle of Mathematical Induction

Methodology for proving by mathematical induction

1. State the propositional function P (n).
2. Prove the basis step, i.e. P (1).
3. Prove the induction step, i.e. ∀k(P (k) → P (k + 1)).

Remark: In this proof you need to use the inductive hypothesis P (n).
4. Conclude ∀nP (n) by the principle of mathematical induction.
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Principle of Mathematical Induction

Example
Prove that the sum of the first n odd positive integers is n2.†

Whiteboard.

†Historical remark. From 1575, it could be the first property proved using the
PMI (Gunderson 2011, § 1.8).
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Principle of Mathematical Induction

Example
Prove that if n ∈ Z+, then

1 + 2 + 3 + · · · + n = n(n + 1)
2 .

Proof

1. P (n): 1 + 2 + 3 + · · · + n = n(n + 1)
2 .

2. Basis step P (1): 1 = 1(1 + 1)
2 .

Continued on next slide
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Principle of Mathematical Induction

Proof (continuation)
3. Inductive step:

Inductive hypothesis P (k): 1 + 2 + 3 + · · · + k = k(k + 1)
2 .

Let’s prove P (k + 1):

1 + 2 + 3 + · · · + k + (k + 1) = k(k + 1)
2 + (k + 1) (by IH)

= (k + 1)
(

k

2 + 1
)

(by arithmetic)

= (k + 1)(k + 2)
2 (by arithmetic)

4. ∀nP (n) by the principle of induction mathematical.
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Principle of Mathematical Induction

Example
Prove that if n ∈ N, then

20 + 21 + 22 + · · · + 2n = 2n+1 − 1

Proved on next slide

Mathematical Induction 21/41



Principle of Mathematical Induction

Proof
1. P (n): 20 + 21 + 22 + · · · + 2n = 2n+1 − 1

2. Basis step P (0): 20 = 1 = 20+1 − 1.
3. Inductive step:

Inductive hypothesis P (k): 20 + 21 + 22 + · · · + 2k = 2k+1 − 1
Let’s prove P (k + 1):

20 + 21 + 22 + · · · + 2k + 2k+1 = 2k+1 − 1 + 2k+1 (by IH)
= 2(2k+1) − 1 (by arithmetic)
= 2k+2 − 1 (by arithmetic)
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Strong Induction

Proof by strong (or course-of-values) induction
Let P (n) be a propositional function.

To prove that P (n) is true for all n ∈ Z+, we must make two proofs:
Basis step: Prove P (1)

Inductive step: Prove [P (1) ∧ P (2) ∧ · · · ∧ P (k)] → P (k + 1) for all
k ∈ Z+

The (strong) inductive hypothesis is given by

P (j) is true for j = 1, 2, . . . , k.
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Strong Induction

Definition ([strong induction)
Inference rule version:

P (1) ∀k[(P (1) ∧ P (2) ∧ · · · ∧ P (k)) → P (k + 1)]
(strong induction)

∀nP (n)
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Strong Induction

Example (a part of the fundamental theorem of arithmetic)
Prove that if n is an integer greater than 1, either is prime itself or is the
product of prime numbers.

Proved on next slide
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Strong Induction

Proof
1. P (n): n is prime itself or it is the product of prime numbers.

2. Basis step P (2): 2 is a prime number.
3. Inductive step:

Inductive hypothesis: P (j) is true for j = 1, 2, . . . , k.
Let’s prove that k + 1 satisfies the property:
3.1 If k + 1 is a prime number then it satisfies the property.
3.2 If k + 1 is a composite number:

k + 1 = ab where 2 ≤ a ≤ b < k + 1. Since P (a) and P (b) by
the inductive hypothesis, then P (k + 1).

4. P (n) is true for all integer n greater than 1 by strong induction.
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First-Order Peano Arithmetic

Giuseppe Peano
(1858 – 1932)

Axioms of first-order Peano arithmetic†

∀n. 0 ̸= n′

∀m∀n. m′ = n′ → m = n

∀n. 0 + n = n

∀m∀n. m′ + n = (m + n)′

∀n. 0 ∗ n = 0
∀m∀n. m′ ∗ n = n + (m ∗ n)

For all formulae A,

[A(0) ∧ (∀n. A(n) → A(n′))] → ∀nA(n)

†See, for example, (Hájek and Pudlák 1998).
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First-Order Peano Arithmetic

Theorem
The principle of mathematical induction and strong induction are equival-
ent.†

†See, for example, (Gunderson 2011).
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