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Preliminaries

Convention
The number assigned to chapters, examples, exercises, figures, sections,
and theorems on these slides correspond to the numbers assigned in the
textbook (Rosen 2004).
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Lattices from the Partial Orders Theory

Definition
A lattice (retículo) is a poset where every pair of elements has both a
supremum and an infimum.

Example
The following poset is a lattice.
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Lattices from the Partial Orders Theory

Example (counter-example)
The following poset is not a lattice because the upper bounds of the pair
{b, c} are d, e and f , but this set has not a least upper bound.
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Lattices from the Partial Orders Theory

Example (counter-example)
The following poset is not a lattice because for example, the pair {1, 2} has
not supremum.

⊥

2 . . .10 n . . .
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Lattices from the Partial Orders Theory

Example
(Z+, |) is a lattice where the supremum is the least common multiple
and the infimum is the greatest common divisor.

Let A be a set. Is (P (A),⊆) a lattice?
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Algebraic Structures

Definition
An algebraic structure on a set A ̸= 0 is essentially a collection of n-ary
operations on A (Cohn 1981, p. 41).

Example
A semigroup (S, ∗) is a set S with an associative binary operation ∗ :
S × S → S.

Example
A monoid (M, ∗, ϵ) is a semigroup (M, ∗) with an element ϵ ∈M which is
an unit for ∗, i.e. ∀x(x ∗ ϵ = ϵ ∗ x = x).
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Lattices from the Algebraic Structures Theory

Definition
Let ∧ and ∨ be two binaries operations, called meet and join, respectively. A
lattice retículo is an algebraic structure (L,∧,∨), which satisfy the following
axioms for all x, y and z in L (Lipschutz and Lipson 2007):

x ∧ y = y ∧ x (Commutative laws)
x ∨ y = y ∨ x

(x ∧ y) ∧ z = x ∧ (y ∧ z) (Associative laws)
(x ∨ y) ∨ z = x ∨ (y ∨ z)

x ∧ (x ∨ y) = x (Absortion laws)
x ∨ (x ∧ y) = x
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Lattices from the Algebraic Structures Theory

Example
Let A be a set. (P (A),∩,∪) is a lattice.
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Lattices from the Algebraic Structures Theory

Definition
The dual of any statement in a lattice (L,∧,∨) is the statement obtained
by interchanging ∧ and ∨.

Example
The dual of x ∧ (y ∨ x) = x ∨ x is x ∨ (y ∧ x) = x ∧ x.

Theorem (principle of duality)
The dual of any theorem in a lattice is also an theorem (Lipschutz and
Lipson 2007).

Proof.
The dual of every axiom in a lattice is also an axiom. Hence, the dual
theorem can be proved by using the dual of each step of the proof of the
original theorem.
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Lattices from the Algebraic Structures Theory

Example
Let (L,∧,∨) be a lattice. Prove the idempotent laws

x ∧ x = x, (1)
x ∨ x = x. (2)

Proof of (1).

x ∧ x = x ∧ (x ∨ (x ∧ y)) (second absortion law)
= x (first absortion law)

Proof of (2).
By principle of duality on (1).
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Lattices from the Algebraic Structures Theory

Problem 40 (p. 500)
Prove that if x and y are elements of a lattice (L,∧,∨) then x ∨ y = y, if
and only if, x ∧ y = x.

Proof →.
Let’s suppose x ∨ y = y. Then

x = x ∧ (x ∨ y) (first absortion law)
= x ∧ y (hypothesis)

Continued on next slide
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Lattices from the Algebraic Structures Theory

Proof ←.
Let’s suppose x ∧ y = x. Then

y = y ∨ (y ∧ x) (second absortion law)
= y ∨ (x ∧ y) (commutative law)
= y ∨ x (hypothesis)
= x ∨ y (commutative law)
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Equivalence of the Definitions

Theorem
Let (L,∧,∨) be a lattice. Then (L,⪯) is a partial order, where the rela-
tion ⪯ is defined by (Lipschutz and Lipson 2007):

x ⪯ y
def= x ∧ y = x.

Proof.
1. The relation ⪯ is reflexive

x ∧ x = x (idempotency), for all x ∈ L. Therefore x ⪯ x, for all
x ∈ L.

Continued on next slide
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Equivalence of the Definitions

Proof (continuation)
2. The relation ⪯ is antisymmetric

Suppose x ⪯ y and y ⪯ x, then x ∧ y = x and y ∧ x = y. Therefore

x = x ∧ y (hypothesis)
= y ∧ x (commutative law)
= y (hypothesis)

That is, ⪯ is antisymmetric.

Continued on next slide
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Equivalence of the Definitions

Proof (continuation).
3. The relation ⪯ is transitive

Suppose x ⪯ y and y ⪯ z, then x ∧ y = x and y ∧ z = y. Therefore

x ∧ z = (x ∧ y) ∧ z (hypothesis)
= x ∧ (y ∧ z) (associativity law)
= x ∧ y (hypothesis)
= x (hypothesis)

That is, x ⪯ z.
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Equivalence of the Definitions

Remark
Let (L,∧,∨) be a lattice and let be (L,⪯) the order partial induced by
(L,∧,∨). It is possible prove that (L,⪯) is a lattice.
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Equivalence of the Definitions

Theorem (Problem 39, p. 500)
Let (L,⪯) be a lattice. Then (L,∧,∨) is a lattice, where

x ∧ y
def= inf(x, y),

x ∨ y
def= sup(x, y),

Proof.
1. Commutative laws for ∧ and ∨ (Rosen’s solution).

Because inf(x, y) = inf(y, x) and sup(x, y) = sup(y, x), it follows
that x ∧ y = y ∧ x and x ∨ y = y ∨ x.

Continued on next slide
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Equivalence of the Definitions

Proof (continuation)
2. Associative laws for ∧ and ∨ (Rosen’s solution).

Using the definition, (x ∧ y) ∧ z is a lower bound of x, y and z that
is greater than every other lower bound. Because x, y and z play
interchangeable roles, x ∧ (y ∧ z) is the same element.

Similarly, (x ∨ y) ∨ z is an upper bound of x, y and z that is less than
every other upper bound. Because x, y and z play interchangeable
roles, x ∨ (y ∨ z) is the same element.

Continued on next slide
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Equivalence of the Definitions

Proof (continuation).
3. Absortion laws for ∧ and ∨ (Rosen’s solution).

To show that x ∧ (x ∨ y) = x it is sufficient to show that x is the
greatest lower bound of x, and x ∨ y. Note that x is a lower bound
of x, and because x ∨ y is by definition greater than x, x is a lower
bound for it as well. Therefore, x is a lower bound. But any lower
bound of x has to be less than x, so x is the greatest lower bound.

The second statement is the dual of the first; we omit its proof.
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