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Preliminaries

Convention
The number assigned to chapters, examples, exercises, figures, sections,
and theorems on these slides correspond to the numbers assigned in the

textbook (Rosen 2004).
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Lattices from the Partial Orders Theory

Definition
A lattice (reticulo) is a poset where every pair of elements has both a
supremum and an infimum.
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Lattices from the Partial Orders Theory

Definition
A lattice (reticulo) is a poset where every pair of elements has both a
supremum and an infimum.

Example
The following poset is a lattice.
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Lattices from the Partial Orders Theory

Example (counter-example)

The following poset is not a lattice because the upper bounds of the pair
{b,c} are d, e and f, but this set has not a least upper bound.
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Lattices from the Partial Orders Theory

Example (counter-example)

The following poset is not a lattice because for example, the pair {1,2} has
not supremum.
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Lattices from the Partial Orders Theory

Example

@ (Z*,]) is a lattice where the supremum is the least common multiple
and the infimum is the greatest common divisor.
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Lattices from the Partial Orders Theory

Example

@ (Z*,]) is a lattice where the supremum is the least common multiple
and the infimum is the greatest common divisor.

o Let A be aset. Is (P(A), Q) a lattice?
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Algebraic Structures

Definition
An algebraic structure on a set A # 0 is essentially a collection of n-ary
operations on A (Cohn 1981, p. 41).

Example

A semigroup (S,%) is a set S with an associative binary operation * :
Sx8§—S.

Example

A monoid (M, x, €) is a semigroup (M, ) with an element € € M which is
an unit for *, i.e. Ve(z*xe=€exx =x).

Lattices 9/33



Lattices from the Algebraic Structures Theory

Definition

Let A and V be two binaries operations, called meet and join, respectively. A
lattice reticulo is an algebraic structure (L, A, V), which satisfy the following
axioms for all z, y and z in L (Lipschutz and Lipson 2007):

rTANy=yANz (Commutative laws)
rVy=yVzx
(xAy)ANz=xA(yAz) (Associative laws)

(xVy)Vz=zV(yVz2)

A

x (Absortion laws)
zV (

zVy)==x
TAY)=x
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Lattices from the Algebraic Structures Theory

Example
Let A be a set. (P(A),N,U) is a lattice.
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Lattices from the Algebraic Structures Theory

Definition
The dual of any statement in a lattice (L, A, V) is the statement obtained
by interchanging A and V.
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Lattices from the Algebraic Structures Theory

Definition
The dual of any statement in a lattice (L, A, V) is the statement obtained
by interchanging A and V.

Example
Thedualof A (yVaz)=axVaiszV (yAz)=zAu.
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Lattices from the Algebraic Structures Theory

Definition
The dual of any statement in a lattice (L, A, V) is the statement obtained
by interchanging A and V.

Example
Thedualof A (yVaz)=axVaiszV (yAz)=zAu.

Theorem (principle of duality)

The dual of any theorem in a lattice is also an theorem (Lipschutz and
Lipson 2007).
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Lattices from the Algebraic Structures Theory

Definition
The dual of any statement in a lattice (L, A, V) is the statement obtained
by interchanging A and V.

Example
Thedualof A (yVaz)=axVaiszV (yAz)=zAu.

Theorem (principle of duality)
The dual of any theorem in a lattice is also an theorem (Lipschutz and
Lipson 2007).

Proof.

The dual of every axiom in a lattice is also an axiom. Hence, the dual
theorem can be proved by using the dual of each step of the proof of the
original theorem. |
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Lattices from the Algebraic Structures Theory

Example

Let (L, A, V) be a lattice. Prove the idempotent laws

rNr=ux, (1)
rVzr=ux. (2)
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Lattices from the Algebraic Structures Theory

Example
Let (L, A, V) be a lattice. Prove the idempotent laws

TNz =z, (1)
TV =z (2)
Proof of (1).
zAx=xA(xV(xAy)) (second absortion law)

=2z (first absortion law) [ |
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Lattices from the Algebraic Structures Theory

Example
Let (L, A, V) be a lattice. Prove the idempotent laws

rNr=ux, (1)
TV =z (2)
Proof of (1).
zAx=xA(xV(xAy)) (second absortion law)
=2z (first absortion law) [ |
Proof of (2).
By principle of duality on (1). |
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Lattices from the Algebraic Structures Theory

Problem 40 (p. 500)

Prove that if = and y are elements of a lattice (L, A,V) then z Vy =y, if
and only if, x Ay = x.
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Lattices from the Algebraic Structures Theory

Problem 40 (p. 500)

Prove that if = and y are elements of a lattice (L, A,V) then z Vy =y, if
and only if, x Ay = x.

Proof —.
Let's suppose = Vy = y. Then

r=xA(xVy) (first absortion law)
=z Ay (hypothesis) |
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Lattices from the Algebraic Structures Theory

Problem 40 (p. 500)

Prove that if = and y are elements of a lattice (L, A,V) then z Vy =y, if
and only if, x Ay = x.

Proof —.
Let's suppose = Vy = y. Then

r=xA(xVy) (first absortion law)
=z Ay (hypothesis) |

Continued on next slide
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Lattices from the Algebraic Structures Theory

Proof <.
Let's suppose z Ay = x. Then

y=yV(yAx)
=yV(zAy)
=yVux
=xVy

Lattices

(second absortion law)
(commutative law)

(hypothesis)
(

commutative law)
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Equivalence of the Definitions

Theorem
Let (L,A,V) be a lattice. Then (L,=) is a partial order, where the rela-
tion < is defined by (Lipschutz and Lipson 2007):

:cjyd:efar/\yzﬁ.
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Equivalence of the Definitions

Theorem
Let (L,A,V) be a lattice. Then (L,=) is a partial order, where the rela-
tion < is defined by (Lipschutz and Lipson 2007):

xjyd:efar/\yzﬁ.

Proof.
1. The relation < is reflexive

x Az = x (idempotency), for all x € L. Therefore z < x, for all
xz € L.

Continued on next slide
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Equivalence of the Definitions

Proof (continuation)

2. The relation < is antisymmetric

Suppose z <y and y < x, then z Ay = x and y A x = y. Therefore

rT=x Ay (hypothesis)
=yAzx (commutative law)
=y (hypothesis)

That is, < is antisymmetric.

Continued on next slide
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Equivalence of the Definitions

Proof (continuation).

3. The relation < is transitive

Suppose z <y and y < z, then x Ay =z and y A z = y. Therefore

xAz=(xANy) Az (hypothesis)
=z A(YyAz) (associativity law)
=z Ay (hypothesis)
==z (hypothesis)
That is, z < z. |
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Equivalence of the Definitions

Remark

Let (L,A,V) be a lattice and let be (L, <) the order partial induced by
(L, A, V). It is possible prove that (L, <) is a lattice.
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Equivalence of the Definitions

Theorem (Problem 39, p. 500)
Let (L, <) be a lattice. Then (L, A, V) is a lattice, where

v ANy = inf(z, y),

2 vy sup(z,y),
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Equivalence of the Definitions

Theorem (Problem 39, p. 500)
Let (L, <) be a lattice. Then (L, A, V) is a lattice, where

v ANy = inf(z, y),
2V y < sup(z,y),

Proof.

1. Commutative laws for A and V (Rosen’s solution).

Because inf(x,y) = inf(y, z) and sup(z,y) = sup(y, x), it follows
thatzAy=yAxandxVy=yVz.

Continued on next slide
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Equivalence of the Definitions

Proof (continuation)

2. Associative laws for A and V (Rosen’s solution).

Using the definition, (z A y) A z is a lower bound of z, y and z that
is greater than every other lower bound. Because x, y and z play
interchangeable roles, x A (y A z) is the same element.
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Equivalence of the Definitions

Proof (continuation)

2. Associative laws for A and V (Rosen’s solution).

Using the definition, (z A y) A z is a lower bound of z, y and z that
is greater than every other lower bound. Because x, y and z play
interchangeable roles, x A (y A z) is the same element.

Similarly, (z Vy) V z is an upper bound of z, y and z that is less than
every other upper bound. Because z, y and z play interchangeable
roles, z V (y V z) is the same element.

Continued on next slide
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Equivalence of the Definitions

Proof (continuation).

3. Absortion laws for A and V (Rosen’s solution).

Lattices

To show that z A (z V y) = « it is sufficient to show that z is the
greatest lower bound of z, and z V y. Note that z is a lower bound
of x, and because z V y is by definition greater than z, = is a lower
bound for it as well. Therefore, x is a lower bound. But any lower
bound of x has to be less than z, so x is the greatest lower bound.

The second statement is the dual of the first; we omit its proof.
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