CM0246 Discrete Structures Functions

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2014-2

Preliminaries

Convention

The number assigned to chapters, examples, exercises, figures, sections, and theorems on these slides correspond to the numbers assigned in the textbook (Rosen 2004).

Functions 2/60

Preliminaries

Remark

Recall that if an element of a set is listed more than once it doesn't matter.

Example

$$\{1,3,3,3,5,5,5,5\}=\{1,3,5\}.$$

Functions 3/60

Preliminaries

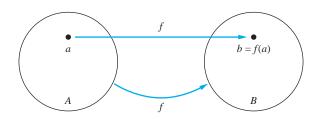
Notation

$$\mathbb{N} = \{0,1,2,\ldots\} \qquad \qquad \text{(natural numbers,} \\ \text{non-negative integers)} \\ \mathbb{Z} = \{\ldots,-2,-1,0,1,2,\ldots\} \qquad \qquad \text{(integers)} \\ \mathbb{Z}^+ = \{1,2,3,\ldots\} \qquad \qquad \text{(positive integers)} \\ \mathbb{Q} = \{p/q \mid p,q \in \mathbb{Z} \text{ and } q \neq 0 \} \qquad \qquad \text{(rational numbers)} \\ \mathbb{R} = (-\infty,\infty) \qquad \qquad \text{(real numbers)}$$

Functions 4/60

Definition

Let A and B be sets. A function (map, mapping or transformation) f from A to B, denoted $f:A\to B$, is an assignment of exactly one element of B to each element of A.



Functions 5/60

[†]Figure source: (Rosen 2012, § 2.3, Fig. 2).

Specification of functions

Explicitly

Functions 6/60

Specification of functions

- Explicitly
- Formula

Functions 7/60

Specification of functions

- Explicitly
- Formula
- Programming languages

Functions 8/60

Specification of functions

- Explicitly
- Formula
- Programming languages

(Advance) question

Are all the functions define using a programming language really functions?

Functions 9/60

Definitions 1

Let f be a function from A to B:

Domain of f: A

 $\textbf{Codomain of } f \colon B$

Functions 10/60

Definitions 1

Let f be a function from A to B:

Domain of f: A

Codomain of f: B

If f(a) = b:

b is the **image** of a

a is a **preimage** of b

The **range** or **image** of f: Set of all images of elements of A

Functions 11/60

Definitions 1

Let f be a function from A to B:

Domain of f: A

Codomain of f: B

If f(a) = b:

b is the **image** of a

a is a **preimage** of b

The **range** or **image** of f: Set of all images of elements of A

If S is a subset of A: $f(S) = \{ f(s) \mid s \in S \}$

Functions 12/60

Example

See slides § 2.3, p. 2 for the 6th ed. of Rosen's textbook.

Functions 13/60

Example

See slides § 2.3, p. 2 for the 6th ed. of Rosen's textbook.

Problem 3 (p. 99)

Determine whether f is a function from the set of all bit strings to the set of integers if

 \bullet f(s) is the number of 1 bits in s

Functions 14/60

Example

See slides § 2.3, p. 2 for the 6th ed. of Rosen's textbook.

Problem 3 (p. 99)

Determine whether f is a function from the set of all bit strings to the set of integers if

- \bullet f(s) is the number of 1 bits in s
- ullet f(s) is the position of a 0 bit in s

Functions 15/60

Example

See slides § 2.3, p. 2 for the 6th ed. of Rosen's textbook.

Problem 3 (p. 99)

Determine whether f is a function from the set of all bit strings to the set of integers if

- ullet f(s) is the number of 1 bits in s
- ullet f(s) is the position of a 0 bit in s
- f(s) is the smallest integer i such that the ith bit of s is 1 and f(s)=0 when s is the empty string

Functions 16/60

Definition

Let A and B be sets. The **Cartesian product** of A and B is

$$A \times B = \{ (a, b) \mid a \in A \land b \in B \}.$$

Example

Let $A = \{a, b\}$ and $B = \{1, 2\}$. Then

$$A \times B = \{(a, 1), (a, 2), (b, 1), (b, 2)\}.$$

Functions 17/60

Definition

Let A and B be sets. The **Cartesian product** of A and B is

$$A \times B = \{ (a, b) \mid a \in A \land b \in B \}.$$

Example

Let $A = \{a, b\}$ and $B = \{1, 2\}$. Then

$$A \times B = \{(a,1), (a,2), (b,1), (b,2)\}.$$

Definition

A subset R of the Cartesian product $A \times B$ is called a **relation** from the set A to the set B.

Functions 18/60

Definition

Let A and B be sets. A **function** f from A to B is a relation of A to B (i.e. subset of $A\times B$) such that

$$\forall x (x \in A \to \exists y (y \in B \land (x, y) \in f))$$

and

$$\forall x \forall y \forall y' \{ ((x,y) \in f \land (x,y') \in f) \to y = y' \}.$$

Remark

In some theories different to set theory, the concept of function is a primitive concept.

Functions 19/60

Definition

Let $f:A\to B.$ The function f is an **injunction** (or **one-to-one**), if and only if,

f(a) = f(a') implies that a = a' for all $a, a' \in A$.

Functions 20/60

Definition

Let $f:A\to B.$ The function f is an **injunction** (or **one-to-one**),

if and only if,

$$f(a)=f(a')$$
 implies that $a=a'$ for all $a,a'\in A.$

Example

Whiteboard.

Functions 21/60

Definition

Let $f: A \to B$. The function f is an **injunction**, if and only if,

$$\forall x \forall x' (f(x) = f(x') \to x = x')$$

or equivalent

$$\forall x \forall x' (x \neq x' \rightarrow f(x) \neq f(x'))$$
 (contrapositive)

where A is the domain of quantification.

Functions 22/60

Is a function (non)-injective?

Let $f: A \to B$.

• To show that f is injective

Show that if f(x) = f(x') for arbitrary $x, x' \in A$ then x = x'.

Functions 23/60

Is a function (non)-injective?

Let $f: A \to B$.

ullet To show that f is injective

Show that if f(x) = f(x') for arbitrary $x, x' \in A$ then x = x'.

ullet To show that f is not injective

Find particular elements $x, x' \in A$ such that $x \neq x'$ and f(x) = f(x').

Functions 24/60

Is a function (non)-injective?

Let $f: A \to B$.

ullet To show that f is injective

Show that if f(x) = f(x') for arbitrary $x, x' \in A$ then x = x'.

ullet To show that f is not injective

Find particular elements $x, x' \in A$ such that $x \neq x'$ and f(x) = f(x').

Exercise

Is the function $f: \mathbb{Z} \to \mathbb{Z}$, where $f(x) = x^2$ injective?

Functions 25/60

Definition

Let $f: A \to B$. The function f is a **surjection** (or **onto**),

if and only if,

for every element $b \in B$ there is an element $a \in A$ with f(a) = b.

Functions 26/60

Definition

Let $f: A \to B$. The function f is a **surjection** (or **onto**),

if and only if,

for every element $b \in B$ there is an element $a \in A$ with f(a) = b.

Example

Whiteboard.

Functions 27/60

Definition

Let $f:A\to B.$ The function f is a **surjection**, if and only if,

$$\forall y \exists x (f(x) = y),$$

where A is the domain of quantification for x and B is the domain of quantification for y.

Functions 28/60

Is a function (non)-surjective?

Let $f: A \to B$.

• To show that f is surjective

Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.

Functions 29/60

Is a function (non)-surjective?

Let $f: A \to B$.

To show that f is surjective

Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.

ullet To show that f is not surjective

Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

Functions 30/60

Is a function (non)-surjective?

Let $f: A \to B$.

ullet To show that f is surjective

Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.

ullet To show that f is not surjective

Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

Exercise

Is the function $f: \mathbb{Z} \to \mathbb{Z}$, where f(x) = x + 1 surjective?

Functions 31/60

Bijective Functions

Definition

A function f is a **bijection** (or **one-to-one correspondence**),

if and only if,

it is both injective and surjective.

Functions 32/60

Bijective Functions

Definition

A function f is a **bijection** (or **one-to-one correspondence**),

if and only if,

it is both injective and surjective.

Example (the identity function)

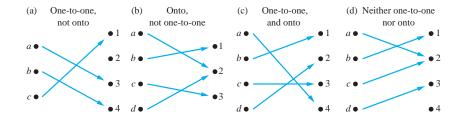
Let A be a set. The identity function $\iota_A:A\to A$ where $\iota_A(a)=a$ is bijective.

Functions 33/60

Injective, Surjective and Bijective Functions

Example

Types of functions.†



Functions 34/60

[†]Figure source: (Rosen 2012, § 2.3, Fig. 5).

Injective, Surjective and Bijective Functions

Problem 16 (p. 100)

Give an example of a function from $\mathbb N$ to $\mathbb N$:

a) injective but not surjective

$$f(x) = x + 1.$$

b) surjective but not injective

$$f(x) = \begin{cases} 0, & \text{if } x = 0 \text{ or } x = 1; \\ x - 1, & \text{otherwise.} \end{cases}$$

Continued on next slide

Functions 35/60

Injective, Surjective and Bijective Functions

Problem (continuation)

c) bijective (but different from the identity function)

$$f(x) = \begin{cases} 0, & \text{if } x = 1; \\ 1, & \text{if } x = 0; \\ x, & \text{otherwise.} \end{cases}$$

d) neither injective nor surjective

$$f(x) = 5.$$

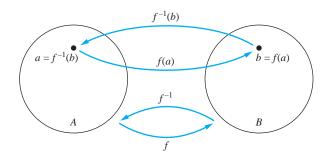
Functions 36/60

Inverse Functions

Definition

Let $f:A\to B$ be a bijective function. The **inverse function** of f, denoted f^{-1} , is the function from B to A defined by \dagger

$$f^{-1}(b) = a \text{ iff } f(a) = b.$$



[†]Figure source: (Rosen 2012, § 2.3, Fig. 6).

Functions 37/60

Inverse Functions

Exercise

Let $f: \mathbb{Z} \to \mathbb{Z}$, where f(x) = x + 1. Find f^{-1} .

Functions 38/60

Inverse Functions

Exercise

Let $f: \mathbb{Z} \to \mathbb{Z}$, where f(x) = x + 1. Find f^{-1} .

Question

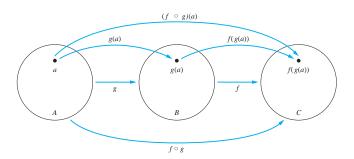
If a function f is not bijective, we cannot define f^{-1} . Why?

Functions 39/60

Definition

Let $g:A\to B$ and $f:B\to C$ be two functions. The **composition** of f with g, denoted $f\circ g$, is the function from A to C defined by †

$$(f\circ g)(a)=f(g(a)).$$



Functions 40/60

[†]Figure source: (Rosen 2012, § 2.3, Fig. 7).

Example

See slides § 2.3, p. 8 for the 6th ed. of Rosen's textbook.

Functions 41/60

Example

See slides § 2.3, p. 8 for the 6th ed. of Rosen's textbook.

Remark

Let f and g be functions. The composition $f\circ g$ cannot be defined unless the range of g is a subset of the domain of f.

Functions 42/60

Example

Let $f: A \to B$ a bijective function such that f(a) = b.

The function $f \circ f^{-1} : B \to B$ is defined by

$$(f \circ f^{-1})(b) = f(f^{-1}(b))$$
 (by def. of composition)
= $f(a)$ (by def. of inverse function)
= b (by def. of inverse function)

that is, $f \circ f^{-1} = \iota_B$.

Functions 43/60

Remark

In general, the composition of function is not commutative.

Functions 44/60

Remark

In general, the composition of function is not commutative.

Exercise

Let $f,g:\mathbb{N}\to\mathbb{N}$ be functions, where $f(x)=x^2$ and g(x)=2x+1. Show that $f\circ g\neq g\circ f$.

Functions 45/60

Problem 25(b) (p. 100)

Let $g:A\to B$ and $f:B\to C$ be two functions. Show that if both f and g are surjective functions, then $f\circ g$ is also surjective.

Solved on next slide

Functions 46/60

Proof

1. Let $c \in C$.

Functions 47/60

Proof

- 1. Let $c \in C$.
- 2. f(b) = c, for some $b \in B$ because f is surjective by hypothesis.

Functions 48/60

Proof

- 1. Let $c \in C$.
- 2. f(b) = c, for some $b \in B$ because f is surjective by hypothesis.
- 3. g(a)=b, for some $a\in A$ because g is surjective by hypothesis.

Functions 49/60

Proof

- 1. Let $c \in C$.
- 2. f(b) = c, for some $b \in B$ because f is surjective by hypothesis.
- 3. g(a) = b, for some $a \in A$ because g is surjective by hypothesis.
- 4. Then

$$(f \circ g)(a) = f(g(a))$$
 (by def. of composition)
= $f(b)$ (by 3)
= c . (by 2)

Functions 50/60

Proof

- 1. Let $c \in C$.
- 2. f(b) = c, for some $b \in B$ because f is surjective by hypothesis.
- 3. g(a) = b, for some $a \in A$ because g is surjective by hypothesis.
- 4. Then

$$(f \circ g)(a) = f(g(a))$$
 (by def. of composition)
= $f(b)$ (by 3)
= c . (by 2)

5. That is, for all $c \in C$, exists $a \in A$ such that $(f \circ g)(a) = c$.

Functions 51/60

Proof

- 1. Let $c \in C$.
- 2. f(b) = c, for some $b \in B$ because f is surjective by hypothesis.
- 3. g(a) = b, for some $a \in A$ because g is surjective by hypothesis.
- 4. Then

$$(f \circ g)(a) = f(g(a))$$
 (by def. of composition)
= $f(b)$ (by 3)
= c . (by 2)

- 5. That is, for all $c \in C$, exists $a \in A$ such that $(f \circ g)(a) = c$.
- 6. Hence, $f \circ g$ is surjective.

Functions 52/60

Problem 26 (p. 101)

If f and $f\circ g$ are injections, does it follow that g is injective? Justify your answer.

Functions 53/60

Proof

The function g must be injective.

- 1. Let $g:A\to B$ and $f:B\to C$ be two functions, and suppose g is not injective.
- 2. Exists distinct elements $x, x' \in A$ such that g(x) = g(x') because g is not injective.
- 3. Then

$$\begin{split} (f\circ g)(x) &= f(g(x)) & \text{(by def. de composition)} \\ &= f(g(x')) & \text{(by step 2)} \\ &= (f\circ g)(x'). & \text{(by def. de composition)} \end{split}$$

Hence, $f \circ g$ is not injective (contradiction).

4. Therefore, the function g must be injective.

Functions 54/60

Definition

Let $f: A \to B$. The **graph** of f is the set

$$\left\{\,(a,b)\mid a\in A \text{ and } f(a)=b\,\right\}.$$

Functions 55/60

Definition

Let $f: A \to B$. The **graph** of f is the set

$$\left\{\,(a,b)\mid a\in A \text{ and } f(a)=b\,\right\}.$$

Example

Whiteboard

Functions 56/60

Definition

Let $f: A \to B$. The **graph** of f is the set

$$\{ (a, b) \mid a \in A \text{ and } f(a) = b \}.$$

Example

Whiteboard

Remarks

Graphs of functions and polymorphic functions

Functions 57/60

Definition

Let $f: A \to B$. The **graph** of f is the set

$$\{ (a, b) \mid a \in A \text{ and } f(a) = b \}.$$

Example

Whiteboard

Remarks

- Graphs of functions and polymorphic functions
- Graphs of functions and programs

Functions 58/60

Definition

Let $f: A \to B$. The **graph** of f is the set

$$\{ (a, b) \mid a \in A \text{ and } f(a) = b \}.$$

Example

Whiteboard

Remarks

- Graphs of functions and polymorphic functions
- Graphs of functions and programs
- Partial and total functions

Functions 59/60

References

Rosen, K. H. (2004). Matemática Discreta y sus Aplicaciones. Trans. by Pérez Morales, J. M., Moro Carreño, J., Lías Quintero, A. I. and Ramos Alonc, P. A. 5th ed. McGraw-Hill (cit. on p. 2).

— (2012). Discrete Mathematics and Its Applications. 7th ed. McGraw-Hill (cit. on pp. 5, 34, 37, 40).

Functions 60/60