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Cardinality

Definition
Let A be a finite set. The number of (distinct) elements in A, denoted |A|,
is called the cardinality of A.

Definition
Let A and B be finite or infinite sets. The sets A and B have the same
cardinality, if and only, there is a bijection from A to B.

Injunction, surjection or bijection?
Draw figures in the whiteboard.
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Cardinality

Example
(Proofs on the whiteboard)

|Z+| = |N|.

|N| = |Even|, where Even = { 2n | n ∈ N }.

|N| = |Mk|, where Mk is the set of the non-negative multiples of
k ∈ Z+, i.e. Mk = { nk | n ∈ N }.

|[0, 1]| = |[a, b]|, where a, b ∈ R and a < b.
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Cardinality

(1872 – 1970)†

‘The possibility that whole and part may
have the same number of terms is, it
must be confessed, shocking to common-
sense.’ (Russell 1903, p. 358)

†Image from the MacTutor History of Mathematics Archive.
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Cardinality

Example (Lipschutz (1998), Solved problem 6.2, p. 153)
Show that |[0, 1]| = |(0, 1)|.

Solution
Note that

[0, 1] = {0, 1, 1/2, 1/3, 1/4, . . .} ∪ A

(0, 1) = {1/2, 1/3, 1/4, . . .} ∪ A

where

A = [0, 1] − {0, 1, 1/2, 1/3, 1/4, . . .}
= (0, 1) − {1/2, 1/3, 1/4, . . .}.
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Cardinality

Solution (continuation)

From the figure† we define the bijective function f : [0, 1] → (0, 1) by

f(x) =


1/2, if x = 0;
1/(n + 1), if x = 1/n where n ∈ Z+;
x, otherwise.

†Figure source: (Lipschutz 1998, Fig. 6.5).
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Cardinality

Exercise
Let A and B be sets. Show |A × B| = |B × A|.
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Enumerable and Non-Enumerable Sets

Question
Has all the infinite sets the same cardinality?

Definition
A set that is either finite or has the same cardinality as the set of positive
integers is called enumerable (or countable).

Definition
A set that is not enumerable (not countable) is called non-enumerable (or
uncountable).

Example
Whiteboard.
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Enumerable and Non-Enumerable Sets

Example (the positive rational numbers are enumerable†) 2.5 Cardinality of Sets 173
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Terms not circled
are not listed
because they
repeat previously
listed terms

FIGURE 3 The Positive Rational Numbers Are Countable.

arrange the positive rational numbers by listing those with denominator q = 1 in the first row,
those with denominator q = 2 in the second row, and so on, as displayed in Figure 3.

The key to listing the rational numbers in a sequence is to first list the positive rational
numbers p/q with p + q = 2, followed by those with p + q = 3, followed by those with
p + q = 4, and so on, following the path shown in Figure 3. Whenever we encounter a number
p/q that is already listed, we do not list it again. For example, when we come to 2/2 = 1 we
do not list it because we have already listed 1/1 = 1. The initial terms in the list of positive
rational numbers we have constructed are 1, 1/2, 2, 3, 1/3, 1/4, 2/3, 3/2, 4, 5, and so on. These
numbers are shown circled; the uncircled numbers in the list are those we leave out because
they are already listed. Because all positive rational numbers are listed once, as the reader can
verify, we have shown that the set of positive rational numbers is countable. ▲

An Uncountable Set
Not all infinite sets have
the same size! We have seen that the set of positive rational numbers is a countable set. Do we have a promising

candidate for an uncountable set? The first place we might look is the set of real numbers. In
Example 5 we use an important proof method, introduced in 1879 by Georg Cantor and known
as the Cantor diagonalization argument, to prove that the set of real numbers is not countable.
This proof method is used extensively in mathematical logic and in the theory of computation.

EXAMPLE 5 Show that the set of real numbers is an uncountable set.

Solution: To show that the set of real numbers is uncountable, we suppose that the set of real
numbers is countable and arrive at a contradiction. Then, the subset of all real numbers that
fall between 0 and 1 would also be countable (because any subset of a countable set is also
countable; see Exercise 16). Under this assumption, the real numbers between 0 and 1 can be
listed in some order, say, r1, r2, r3, . . . . Let the decimal representation of these real numbers be

r1 = 0.d11d12d13d14 . . .

r2 = 0.d21d22d23d24 . . .

r3 = 0.d31d32d33d34 . . .

r4 = 0.d41d42d43d44 . . .

...

where dij ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. (For example, if r1 = 0.23794102 . . . , we have d11 =
2, d12 = 3, d13 = 7, and so on.) Then, form a new real number with decimal expansion

Remark: We do not define explicitly the function, but a method (program)
for enumerating the set.

†Figure source: (Rosen 2012, § 2.5, Fig. 3).
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Enumerable and Non-Enumerable Sets

Theorem
The interval (0, 1) is non-enumerable.

Proved on next slide
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Enumerable and Non-Enumerable Sets

Proof.
Let’s suppose (0, 1) is enumerable.

r1 = 0.d11d12d13d14 . . .

r2 = 0.d21d22d23d24 . . .

r3 = 0.d31d32d33d34 . . .

...

Let r = 0.d1d2d3 . . . ∈ (0, 1), where

di =
{

4, if dii ̸= 4;
5, if dii = 4.

The number r does not belong to the above enumeration. Therefore (0, 1)
is non-enumerable.
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Enumerable and Non-Enumerable Sets

Theorem
Let A and B be sets such that A ⊆ B. If A is non-enumerable then B is
non-enumerable.
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Enumerable and Non-Enumerable Sets

Theorem
The set of the real numbers is non-enumerable.

Proof.
The interval (0, 1) is a non-enumerable subset of R. Therefore (using a
previous theorem), R is non-enumerable.

Remark
Comment about the continuum hypothesis.
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Enumerable and Non-Enumerable Sets

Remark
The quadratic formulae are the solution to the quadratic equation

ax2 + bx + c = 0.

Two quadratic formulae are

x = −b ±
√

b2 − 4ac

2a

and
x = −2c

b ∓
√

b2 − 4ac
. (1)
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Enumerable and Non-Enumerable Sets

Example
Show that |(−1, 1)| = |R|.

Solution
The function f : (−1, 1) → R defined by

f(x) = x

1 − x2

has as inverse the function f−1 : R → (−1, 1) given by (obtained using the
quadratic formula (1))

f−1(x) = 2x

1 +
√

1 + 4x2
.
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Enumerable and Non-Enumerable Sets

Solution (continuation)

f(x) = x

1 − x2

Since the function f is a bijection then |(−1, 1)| = |R|. Source: Munkres
(2000, Example § 18.5).
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