CM0246 Discrete Structures Boolean Algebras

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2014-2

Preliminaries

Convention

The number assigned to chapters, examples, exercises, figures, sections, and theorems on these slides correspond to the numbers assigned in the textbook (Rosen 2004).

Boolean operations

We define the following operations in the set $B = \{0, 1\}$:

Boolean sum

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1 and 1 + 1 = 1.

Boolean product

 $0 \cdot 0 = 0, 0 \cdot 1 = 0, 1 \cdot 0 = 0$ and $1 \cdot 1 = 1$.

Complement

 $\overline{0}=1 \text{ and } \overline{1}=0.$

Boolean operations

We define the following operations in the set $B = \{0, 1\}$:

Boolean sum

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1 and 1 + 1 = 1.

Boolean product

$$0 \cdot 0 = 0, \ 0 \cdot 1 = 0, \ 1 \cdot 0 = 0 \text{ and } 1 \cdot 1 = 1.$$

Complement

$$\overline{0} = 1$$
 and $\overline{1} = 0$.

Precedence (highest to lowest): Complement, Boolean product and Boolean sum.

Boolean operations

We define the following operations in the set $B = \{0, 1\}$:

Boolean sum

0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1 and 1 + 1 = 1.

Boolean product

$$0 \cdot 0 = 0, \ 0 \cdot 1 = 0, \ 1 \cdot 0 = 0 \text{ and } 1 \cdot 1 = 1.$$

Complement

 $\overline{0} = 1$ and $\overline{1} = 0$.

Precedence (highest to lowest): Complement, Boolean product and Boolean sum.

Example

Whiteboard.

From Boolean operations/logical operators to logical operators/Boolean operations

Boolean operations	logic operators
•	\wedge
+	\vee
_	-
0	\mathbf{F}
1	Т

From Boolean operations/logical operators to logical operators/Boolean operations

Boolean operations	logic operators
•	\wedge
+	\vee
_	-
0	\mathbf{F}
1	Т

Example (from equality/logical equivalence to logical equivalence/equality) Whiteboard.

Definition

Let $B = \{0,1\}$. A function from B^n to B is called a **Boolean function of degree** n.

Definition

Let $B = \{0,1\}$. A function from B^n to B is called a **Boolean function of degree** n.

Example

Whiteboard.

Theorem (Example 5, p. 280)

If |A| = m and |B| = n then $|\{f : A \rightarrow B\}| = n^m$.

Theorem (Example 5, p. 280)

 $\mathsf{lf}\;|A|=m\;\mathsf{and}\;|B|=n\;\mathsf{then}\;|\{f:A\to B\}|=n^m.$

Example

There are 16 Boolean functions of degree 2.

Definition

Let x_1, x_2, \ldots, x_n be Boolean variables. The **Boolean expressions** are inductively defined by

- Basis step: 0, 1 and x_1, x_2, \ldots, x_n are Boolean expressions.
- Inductive step: If E_1 and E_2 are Boolean expressions then $\overline{E_1}$, $(E_1 \cdot E_2)$ and $(E_1 + E_2)$ are Boolean expressions.

Definition

Let x_1, x_2, \ldots, x_n be Boolean variables. The **Boolean expressions** are inductively defined by

- Basis step: 0, 1 and x_1, x_2, \ldots, x_n are Boolean expressions.
- Inductive step: If E_1 and E_2 are Boolean expressions then $\overline{E_1}$, $(E_1 \cdot E_2)$ and $(E_1 + E_2)$ are Boolean expressions.

Each Boolean expression represents a Boolean function.

Example

Whiteboard.

Logical Equivalences

Identity laws $p \wedge T \equiv p$ $p \vee \mathbf{F} \equiv p$ Domination laws $p \wedge \mathbf{F} \equiv \mathbf{F}$ $p \lor T \equiv T$ Idempotent laws $p \wedge p \equiv p$ $p \lor p \equiv p$ Double negation law $\neg(\neg p) \equiv p$ Commutative laws $p \wedge q \equiv q \wedge p$ $p \lor q \equiv q \lor p$

Associate laws $(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$ $(p \lor q) \lor r \equiv p \lor (q \lor r)$ Distributive laws $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$ De Morgan's laws $\neg (p \land q) \equiv \neg p \lor \neg q$ $\neg (p \lor q) \equiv \neg p \land \neg q$ Absorption laws $p \land (p \lor q) \equiv p$ $p \lor (p \land q) \equiv p$ Negation laws $p \wedge \neg p \equiv F$ $p \vee \neg p \equiv T$

Boolean Identities

Identity laws $x \cdot 1 = x$ x + 0 = xDomination laws $x \cdot 0 = 0$ x + 1 = 1Idempotent laws $x \cdot x = x$ x + x = xDouble complement law $\overline{\overline{x}} = x$ Commutative laws $x \cdot y = y \cdot x$ x + y = y + x

Associate laws $(x \cdot y) \cdot z = x \cdot (y \cdot z)$ (x+y) + z = x + (y+z)Distributive laws $x \cdot (y+z) = (x \cdot y) + (x \cdot z)$ $x + (y \cdot z) = (x + y) \cdot (x + z)$ De Morgan's laws $\overline{x \cdot y} = \overline{x} + \overline{y}$ $\overline{(x+y)} = \overline{x} \cdot \overline{y}$ Absorption laws $x \cdot (x+y) = x$ $x + x \cdot y = x$ Complement laws $x \cdot \overline{x} = 0$ $x + \overline{x} = 1$

Boolean Identities

Each Boolean identity can be proved using a table.

Example

Whiteboard.

Definition

Let \wedge and \vee be two binaries operations, - a unary operation and 0 and 1 two constants. A **Boolean algebra** is an algebraic structure $(B, \wedge, \vee, -, 0, 1)$, which satisfy the following axioms for all x, y and z in B:

Identity laws $x \wedge 1 = x$ $x \vee 0 = x$ Complement laws $x \wedge \overline{x} = 0$ $x \vee \overline{x} = 1$ Associate laws

$$(x \land y) \land z = x \land (y \land z)$$

 $(x \lor y) \lor z = x \lor (y \lor z)$

Commutative laws

$$x \wedge y = y \wedge x$$

 $x \vee y = y \vee x$

Distributive laws

$$\begin{split} & x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z) \\ & x \vee (y \wedge z) = (x \vee y) \wedge (x \vee z) \end{split}$$

Example

$(B,\wedge,ee,^-,0,1)$	Set theory	Propositional logic	$(\{0,1\},\cdot,+,^-,0,1)$
В	U	set of formulae	$\{0,1\}$
\wedge	\cap	\wedge	
\vee	\cup	\vee	+
_	_	-	-
0	Ø	\mathbf{F}	0
1	U	Т	1

Definition

The **dual** of any statement in a Boolean algebra $(B, \land, \lor, -, 0, 1)$ is the statement obtained by interchanging \land and \lor , and interchanging 0 and 1.

Definition

The **dual** of any statement in a Boolean algebra $(B, \land, \lor, -, 0, 1)$ is the statement obtained by interchanging \land and \lor , and interchanging 0 and 1.

Example

The dual of $x \wedge (y \vee 0)$ is $x \vee (y \wedge 1)$.

Definition

The **dual** of any statement in a Boolean algebra $(B, \land, \lor, -, 0, 1)$ is the statement obtained by interchanging \land and \lor , and interchanging 0 and 1.

Example

The dual of $x \wedge (y \vee 0)$ is $x \vee (y \wedge 1)$.

Theorem (Principle of duality. Problem 38, p. 660)

The dual of any theorem in a Boolean algebra is also an theorem.

Definition

The **dual** of any statement in a Boolean algebra $(B, \land, \lor, -, 0, 1)$ is the statement obtained by interchanging \land and \lor , and interchanging 0 and 1.

Example

```
The dual of x \wedge (y \vee 0) is x \vee (y \wedge 1).
```

Theorem (Principle of duality. Problem 38, p. 660)

The dual of any theorem in a Boolean algebra is also an theorem.

Proof.

Similar to the proof of the principle of duality for lattices.

Problem 31 (p. 660)

Let $\mathbb{B} = (B, \wedge, \vee, ^{-}, 0, 1)$ be a Boolean algebra. To prove that \mathbb{B} satisfy the idempotent laws $x \vee x = x$ and $x \wedge x = x$, for every element x.

Problem 31 (p. 660)

Let $\mathbb{B} = (B, \wedge, \vee, ^-, 0, 1)$ be a Boolean algebra. To prove that \mathbb{B} satisfy the idempotent laws $x \vee x = x$ and $x \wedge x = x$, for every element x.

Proof.

$$\begin{aligned} x \lor x &= (x \lor x) \land 1 & (\text{identity law}) \\ &= (x \lor x) \land (x \lor \overline{x}) & (\text{complement law}) \\ &= x \lor (x \land \overline{x}) & (\text{distributive law}) \\ &= x \lor 0 & (\text{complement law}) \\ &= x & (\text{identity law}) \end{aligned}$$

Problem 31 (p. 660)

Let $\mathbb{B} = (B, \wedge, \vee, ^-, 0, 1)$ be a Boolean algebra. To prove that \mathbb{B} satisfy the idempotent laws $x \vee x = x$ and $x \wedge x = x$, for every element x.

Proof.

$$\begin{array}{ll} x \lor x = (x \lor x) \land 1 & (\text{identity law}) & x \land x = (x \land x) \lor 0 \\ &= (x \lor x) \land (x \lor \overline{x}) & (\text{complement law}) &= (x \land x) \lor (x \land \overline{x}) \\ &= x \lor (x \land \overline{x}) & (\text{distributive law}) &= x \land (x \lor \overline{x}) \\ &= x \lor 0 & (\text{complement law}) &= x \land 1 \\ &= x & (\text{identity law}) &= x \end{array}$$

Problem 31 (p. 660)

Let $\mathbb{B} = (B, \wedge, \vee, ^{-}, 0, 1)$ be a Boolean algebra. To prove that \mathbb{B} satisfy the idempotent laws $x \vee x = x$ and $x \wedge x = x$, for every element x.

Proof.

$$\begin{array}{ll} x \lor x = (x \lor x) \land 1 & (\text{identity law}) & x \land x = (x \land x) \lor 0 \\ = (x \lor x) \land (x \lor \overline{x}) & (\text{complement law}) & = (x \land x) \lor (x \land \overline{x}) \\ = x \lor (x \land \overline{x}) & (\text{distributive law}) & = x \land (x \lor \overline{x}) \\ = x \lor 0 & (\text{complement law}) & = x \land 1 \\ = x & (\text{identity law}) & = x \end{array}$$

Remark: $x \wedge x = x/x \vee x = x$ also follows from $x \vee x = x/x \wedge x = x$ by the principle of duality.

Problem 34 (p. 660)

Let $\mathbb{B} = (B, \wedge, \vee, \bar{}, 0, 1)$ be a Boolean algebra. To prove that \mathbb{B} satisfy the double complement law, i.e. $\forall x(x = \overline{x})$.

Problem 34 (p. 660)

Let $\mathbb{B} = (B, \wedge, \vee, \bar{}, 0, 1)$ be a Boolean algebra. To prove that \mathbb{B} satisfy the double complement law, i.e. $\forall x(x = \overline{x})$.

Hint: From the complement laws, we have

$$\overline{x} \wedge \overline{\overline{x}} = 0,$$
$$\overline{x} \vee \overline{\overline{x}} = 1.$$

Proved on next slide

Proof (Lipschutz 1994).

$$\begin{aligned} x &= x \lor 0 \\ &= x \lor (\overline{x} \land \overline{\overline{x}}) \\ &= (x \lor \overline{x}) \land (x \lor \overline{\overline{x}}) \\ &= 1 \land (x \lor \overline{\overline{x}}) \\ &= (\overline{x} \lor \overline{x}) \land (x \lor \overline{\overline{x}}) \\ &= (\overline{x} \lor \overline{x}) \land (\overline{x} \lor x) \\ &= \overline{\overline{x}} \lor (\overline{x}) \land x) \\ &= \overline{\overline{x}} \lor (x \land \overline{x}) \\ &= \overline{\overline{x}} \lor 0 \\ &= \overline{\overline{x}} \end{aligned}$$

(identity law) (complement law) (distributive law) (complement law) (complement law) (commutative law) (distributive law) (commutative law) (complement law) (identity law)

References

Lipschutz, S. (1994). Teoría de Conjuntos y Temas Afines. Serie Schaum. McGraw-Hill (cit. on p. 29).

Rosen, K. H. (2004). Matemática Discreta y sus Aplicaciones. Trans. by Pérez Morales, J. M., Moro Carreño, J., Lías Quintero, A. I. and Ramos Alonc, P. A. 5th ed. McGraw-Hill (cit. on p. 2).