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Preliminaries

Convention
The number assigned to chapters, examples, exercises, figures, sections,
and theorems on these slides correspond to the numbers assigned in the

textbook (Rosen 2004).
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Boolean Functions

Boolean operations
We define the following operations in the set B = {0,1}:
@ Boolean sum
0+0=0,0+1=1,14+40=1and1+1=1.
@ Boolean product
0-0=0,0-1=0,1-0=0and1-1=1.

o Complement

0=1and1=0.
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Boolean Functions

Boolean operations
We define the following operations in the set B = {0,1}:
@ Boolean sum
0+0=0,0+1=1,14+40=1and1+1=1.
@ Boolean product
0-0=0,0-1=0,1-0=0and1-1=1.
o Complement
0=1and1=0.

Precedence (highest to lowest): Complement, Boolean product and Boolean
sum.
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Boolean Functions

Boolean operations
We define the following operations in the set B = {0,1}:
@ Boolean sum
0+0=0,0+1=1,14+40=1and1+1=1.
@ Boolean product
0-0=0,0-1=0,1-0=0and1-1=1.
o Complement
0=1and1=0.
Precedence (highest to lowest): Complement, Boolean product and Boolean
sum.

Example
Whiteboard.
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Boolean Functions

From Boolean operations/logical operators to logical operators/Boolean
operations

Boolean operations logic operators

=
HM/E 1< >
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Boolean Functions

From Boolean operations/logical operators to logical operators/Boolean
operations

Boolean operations logic operators

_l’_

H= 1 <>

0
1

Example (from equality/logical equivalence to logical equivalence/equality)
Whiteboard.

Boolean Algebras 7/30



Boolean Functions

Definition
Let B = {0,1}. A function from B™ to B is called a Boolean function of
degree n.
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Boolean Functions

Definition
Let B = {0,1}. A function from B™ to B is called a Boolean function of
degree n.

Example
Whiteboard.
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Boolean Functions

Theorem (Example 5, p. 280)
If JA| =m and |B| = n then |{f : A — B}| =n".
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Boolean Functions

Theorem (Example 5, p. 280)
If JA| =m and |B| = n then |{f : A — B}| =n".

Example

There are 16 Boolean functions of degree 2.
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Boolean Functions

Definition
Let x1,x9,...,x, be Boolean variables. The Boolean expressions are
inductively defined by

o Basis step: 0, 1 and z1,x2,...,x, are Boolean expressions.

e Inductive step: If By and Ey are Boolean expressions then Ej,
(E1 - E2) and (E; + E3) are Boolean expressions.
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Boolean Functions

Definition
Let x1,x9,...,x, be Boolean variables. The Boolean expressions are
inductively defined by

o Basis step: 0, 1 and z1,x2,...,x, are Boolean expressions.

e Inductive step: If By and Ey are Boolean expressions then Ej,
(E1 - E2) and (E; + E3) are Boolean expressions.

Each Boolean expression represents a Boolean function.

Example
Whiteboard.

Boolean Algebras 13/30



Logical Equivalences

Identity laws
pANT=p
pVF=p
Domination laws
pAF=F
pvT=T
Idempotent laws
PAP=Dp
PVDP=Dp

Double negation law
—(-p)=p
Commutative laws
PAG=qADp
pVqg=qVp

Boolean Algebras

Associate laws
(pAg)AT=pA(gAT)
(pVgVr=pVi(gVr)
Distributive laws
pA(gvr)=({@AgV(PAT)
pV(gAnr)={@VgyA(pVr)
De Morgan's laws
—(pANq)=-pV—q
=(pVaq)=-pA—q
Absorption laws
pAPVE=p
pV(pAg =p

Negation laws

P A -p = F

p\/ﬁpET
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Boolean Identities

Identity laws Associate laws
r-l==x (x-y)-z=z(y-2)
r+0=z (x4+y)+z=z+(y+2)
Domination laws Distributive laws
x-0=0 z-(y+z)=(x-y)+(z-2)
r+1=1 T4 (y-2) = (@+y) - (@+2)
Idempotent laws De Morgan's laws
r-Tr=x T Y=T+7y
T+r=z m =77
Double complement law Absorption laws
T=x r-(rty) ==z
Commutative laws rHzr-y=2z
T Y=y Complement laws
T+Yy=y+x x-T=0

r+zT=1
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Boolean Identities

Each Boolean identity can be proved using a table.

Example
Whiteboard.
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Boolean Algebras

Definition

Let A and V be two binaries operations, ~ a unary operation and 0 and 1 two
constants. A Boolean algebra is an algebraic structure (B, A,V,”,0,1),
which satisfy the following axioms for all x, y and z in B:

Identity laws Associate laws
rANl=x (xAyY)ANz=zA(yAz)
xV0==zx (xVy)Vz=aV(yVz2)
Complement laws Commutative laws

z AT =0 TNYy=yAzx

rVT =1 zVy=yVze

Distributive laws
xA(yVz)=(xAy)V(zAz)
zV(yAz)=(xVy A(xVz)
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Boolean Algebra

Example
(B,A,V,”,0,1) Set theory Propositional logic ({0,1},-,+,7,0,1)
B U set of formulae {0,1}
A N A .
V U V +
0 0 F 0
1 U T 1

Boolean Algebras
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Boolean Algebra

Definition
The dual of any statement in a Boolean algebra (B, A,V,”,0,1) is the
statement obtained by interchanging A and V, and interchanging 0 and 1.
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Boolean Algebra

Definition
The dual of any statement in a Boolean algebra (B, A,V,”,0,1) is the
statement obtained by interchanging A and V, and interchanging 0 and 1.

Example
The dual of z A (yVO0)isxV(yAl).
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Boolean Algebra

Definition
The dual of any statement in a Boolean algebra (B, A,V,”,0,1) is the
statement obtained by interchanging A and V, and interchanging 0 and 1.

Example
The dual of z A (yVO0)isxV(yAl).

Theorem (Principle of duality. Problem 38, p. 660)

The dual of any theorem in a Boolean algebra is also an theorem.
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Boolean Algebra

Definition
The dual of any statement in a Boolean algebra (B, A,V,”,0,1) is the
statement obtained by interchanging A and V, and interchanging 0 and 1.

Example
The dual of z A (yVO0)isxV(yAl).

Theorem (Principle of duality. Problem 38, p. 660)

The dual of any theorem in a Boolean algebra is also an theorem.

Proof.
Similar to the proof of the principle of duality for lattices. |
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Boolean Algebra

Problem 31 (p. 660)

Let B = (B,A,V,”,0,1) be a Boolean algebra. To prove that B satisfy the
idempotent laws x V& = x and = A x = x, for every element .
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Boolean Algebra

Problem 31 (p. 660)

Let B = (B,A,V,”,0,1) be a Boolean algebra. To prove that B satisfy the
idempotent laws x V& = x and = A x = x, for every element .

Proof.

zVr=(xVz)Al (identity law)
=(xVz)A(xVT) (complement law)
=z V(xAT) (distributive law)
=zV0 (complement law)
=2z (identity law)
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Boolean Algebra

Problem 31 (p. 660)

Let B = (B,A,V,”,0,1) be a Boolean algebra. To prove that B satisfy the
idempotent laws x V& = x and = A x = x, for every element .

Proof.

zVr=(xVz)Al (identity law) zAz=(zAz)VO0
=(xVz)A(xVT) (complement law) =(xAz)V(xAT)
=z V(xAT) (distributive law) =z A(xVTI)
=zV0 (complement law) =zAl
= (identity law) =
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Boolean Algebra

Problem 31 (p. 660)

Let B = (B,A,V,”,0,1) be a Boolean algebra. To prove that B satisfy the
idempotent laws x V& = x and = A x = x, for every element .

Proof.

zVr=(xVz)Al (identity law) zAz=(zAz)VO0
=(xVz)A(xVT) (complement law) =(xAz)V(xAT)
=z V(xAT) (distributive law) =z A(xVTI)
=zV0 (complement law) =zAl
= (identity law) =

Remark: x Az = x/x V x = z also follows from x V& = z/z AN x = x by
the principle of duality.
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Boolean Algebra

Problem 34 (p. 660)

Let B = (B,A,V,”,0,1) be a Boolean algebra. To prove that B satisfy the
double complement law, i.e. Vz(z = T).
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Boolean Algebra

Problem 34 (p. 660)

Let B = (B,A,V,”,0,1) be a Boolean algebra. To prove that B satisfy the
double complement law, i.e. Vz(z = T).

Hint: From the complement laws, we have
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Proved on next slide
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Boolean Algebra

Proof (Lipschutz 1994).

Boolean Algebras
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