Category Theory and Functional Programming Subject Introduction

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2022-2

Preliminaries

Textbook

Abramsky and Tzevelekos (2011). Introduction to Categories and Categorical Logic.

Convention

The numbers and page numbers assigned to chapters, examples, exercises, figures, quotes, sections and theorems on these slides correspond to the numbers assigned in the textbook.

Outline

Subject Introduction

From Set Theory to Category Theory

From Functional Programming to Category Theory

Definition of a Category

Diagrams in Categories

Examples of Categories

Isomorphisms

Opposite Categories and Duality

Subcategories

References

Definition

Let $f:X\to Y$ and $g:Y\to Z$ be two functions. The **composite of** g after f is the function defined by

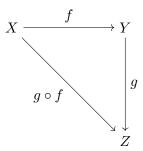
$$g \circ f : X \to Z := x \mapsto g(f x).$$

Definition

Let $f:X\to Y$ and $g:Y\to Z$ be two functions. The **composite of** g after f is the function defined by

$$g \circ f : X \to Z := x \mapsto g(f x).$$

Diagram.



Observation

The textbook writes " $g \circ f(x)$ " instead of " $(g \circ f) x$ ".

Theorem

Let $f: X \to Y$, $g: Y \to Z$ and $h: Z \to W$ be three functions. Then

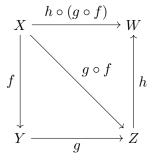
$$h \circ (g \circ f) = (h \circ g) \circ f.$$

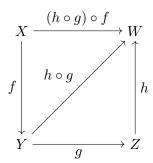
That is, the composition of functions is associative.

Theorem (continuation)

Diagrams.

(i)



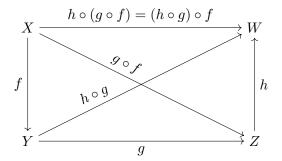


$$h \circ (g \circ f) = (h \circ g) \circ f$$

Theorem (continuation)

Diagrams.

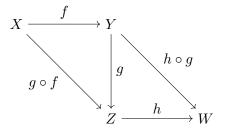
(ii) In (Mac Lane 1998, p. 8).



Theorem (continuation)

Diagrams.

(iii) In (Awodey 2010, p. 3).



$$h \circ (g \circ f) = (h \circ g) \circ f$$

From Set Theory to Category Theory

Definition

Let X be a set. The **identity function on X** is defined by

$$id_X: X \to X := x \mapsto x.$$

Theorem

Let $f: X \to Y$ be a function. Then

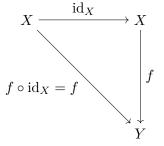
$$f \circ \mathrm{id}_X = f = \mathrm{id}_Y \circ f.$$

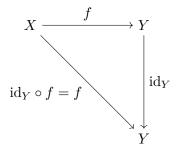
That is, the identity functions are the unit for composition.

Theorem (continuation)

Diagrams.

(i)

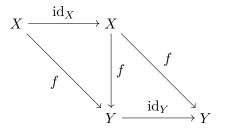




Theorem (continuation)

Diagrams.

(ii) In (Awodey 2010, p. 4).



$$f \circ \mathrm{id}_X = f = \mathrm{id}_Y \circ f$$

From Elements to Functions

Elements as functions

Let $\mathbb{1} := \{*\}$ be an one-element set and let X be a set. For each $x \in X$ we define the function

$$\overline{x}: \mathbb{1} \to X := * \mapsto x.$$

From Elements to Functions

Elements as functions

Let $\mathbb{1} := \{*\}$ be an one-element set and let X be a set. For each $x \in X$ we define the function

$$\overline{x}: \mathbb{1} \to X := * \mapsto x.$$

Theorem

Let X be a set. The set X and the set of functions $\{\overline{x} : \mathbb{1} \to X \mid x \in X\}$ are isomorphic.

Definition

Let $f: X \to Y$ be a function. The function f is

Definition

Let $f:X\to Y$ be a function. The function f is

```
injective iff for all x, x' \in X, fx = fx' implies x = x' surjective iff for all y \in Y, there exists x \in X such that fx = y monic iff for all g, h : Z \to X, f \circ g = f \circ h implies g = h epic iff for all i, j : Y \to Z, i \circ f = j \circ f implies i = j
```

Observation

Nouns: Injection, surjection, monomorphism and epimorphism.

Theorem (Proposition 1)

Let $f: X \to Y$. Then,

- (i) the function f is injective iff f is monic,
- (ii) the function f is surjective iff f is epic.

Theorem (Proposition 1)

Let $f: X \to Y$. Then,

- (i) the function f is injective iff f is monic,
- (ii) the function f is surjective iff f is epic.

Exercise

Let $f: X \to Y$ be a function. Show that f is injective iff it is monic (Proposition 1.i).

Exercise

Let $f: X \to Y$ be a function. Show that f is surjective iff it is epic (Exercise 2).

From Functional Programming to Category Theory

From Functional Programming to Category Theory

Types, composition, identities, applicative and functional laws Whiteboard.

Applicative laws

$$id x = x,$$

$$(g \circ f) x = g (f x),$$

$$fst (x, y) = x,$$

$$\langle f, g \rangle x = (f x, g x).$$

Definition

A **category** C consists of:

- (i) A collection $\mathrm{Obj}(\mathcal{C})$ of **objects**. Notation. Objects are denoted by A,B,C,\ldots
- (ii) A collection Ar(C) of **arrows** or **morphisms**. *Notation*. Arrows are denoted by f, g, h, ...

(continued on next slide)

Definition of a Category 25/104

Definition (continuation)

(iii) Two mappings

 $\mathrm{dom}:\mathrm{Ar}(\mathcal{C})\to\mathrm{Obj}(\mathcal{C})$

 $\mathrm{cod}:\mathrm{Ar}(\mathcal{C})\to\mathrm{Obj}(\mathcal{C})$

(source),

(target).

Definition of a Category 26/104

Definition (continuation)

(iii) Two mappings

$$\operatorname{dom}:\operatorname{Ar}(\mathcal{C})\to\operatorname{Obj}(\mathcal{C})$$
 (source),
 $\operatorname{cod}:\operatorname{Ar}(\mathcal{C})\to\operatorname{Obj}(\mathcal{C})$ (target).

These mappings assign to each arrow f its **domain** dom f and its **codomain** cod f.

Definition of a Category 27/104

Definition (continuation)

(iii) Two mappings

$$\operatorname{dom}:\operatorname{Ar}(\mathcal{C})\to\operatorname{Obj}(\mathcal{C})$$
 (source),
 $\operatorname{cod}:\operatorname{Ar}(\mathcal{C})\to\operatorname{Obj}(\mathcal{C})$ (target).

These mappings assign to each arrow f its **domain** dom f and its **codomain** cod f.

```
Notation. An arrow f with \operatorname{dom} f = A and \operatorname{cod} f = B is written A \xrightarrow{f} B or f: A \to B.
```

(continued on next slide)

Definition of a Category 28/104

Definition (continuation)

Notation. The collection C(A, B) is the collection of arrows from object A to object B, that is,

$$\mathcal{C}(A,B) := \left\{ f \in \operatorname{Ar}(\mathcal{C}) \mid A \xrightarrow{f} B \right\}.$$

Definition of a Category 29/104

Definition (continuation)

Notation. The collection $\mathcal{C}(A,B)$ is the collection of arrows from object A to object B, that is,

$$\mathcal{C}(A,B) := \left\{ f \in Ar(\mathcal{C}) \mid A \xrightarrow{f} B \right\}.$$

Notation. The collection C(A, B) also will be denoted by $Mor_{\mathcal{C}}(A, B)$.

Definition of a Category 30/104

Definition (continuation)

Notation. The collection $\mathcal{C}(A,B)$ is the collection of arrows from object A to object B, that is,

$$\mathcal{C}(A,B) := \left\{ f \in \operatorname{Ar}(\mathcal{C}) \mid A \xrightarrow{f} B \right\}.$$

Notation. The collection C(A, B) also will be denoted by $Mor_{\mathcal{C}}(A, B)$.

Notation. If the collection C(A,B) is a set it is called a **hom-set** and it is denoted $\hom_{\mathcal{C}}(A,B)$.

Definition of a Category 31/104

Definition (continuation)

Notation. The collection $\mathcal{C}(A,B)$ is the collection of arrows from object A to object B, that is,

$$\mathcal{C}(A,B) := \left\{ f \in \operatorname{Ar}(\mathcal{C}) \mid A \xrightarrow{f} B \right\}.$$

Notation. The collection C(A, B) also will be denoted by $Mor_{\mathcal{C}}(A, B)$.

Notation. If the collection $\mathcal{C}(A,B)$ is a set it is called a **hom-set** and it is denoted $\hom_{\mathcal{C}}(A,B)$.

Convention. All the collections C(A, B) are hom-sets in the textbook.

(continued on next slide)

Definition of a Category 32/104

Definition (continuation)

(iv) For all objects A,B,C, a **composition** map

$$C_{A,B,C}: C(A,B) \times C(B,C) \to C(A,C).$$

Notation. The map $\mathcal{C}_{A,B,C}\left(f,g\right)$ is written $g\circ f$.

Definition of a Category 33/104

Definition (continuation)

(iv) For all objects A,B,C, a **composition** map

$$C_{A,B,C}: C(A,B) \times C(B,C) \to C(A,C).$$

Notation. The map $C_{A,B,C}(f,g)$ is written $g \circ f$.

(v) For all object A, an **identity** arrow

$$A \xrightarrow{\operatorname{id}_A} A.$$

(continued on next slide)

Definition of a Category 34/104

Definition (continuation)

The above items must satisfy the following axioms, where arrow equality is a logical primitive.

Definition of a Category 35/104

Definition (continuation)

The above items must satisfy the following axioms, where arrow equality is a logical primitive.

(i) Associativity law

For all arrows
$$A \xrightarrow{f} B$$
, $B \xrightarrow{g} C$, $C \xrightarrow{h} D$,
$$h \circ (g \circ f) = (h \circ g) \circ f.$$

Definition of a Category 36/104

Definition of a Category

Definition (continuation)

The above items must satisfy the following axioms, where arrow equality is a logical primitive.

(i) Associativity law

For all arrows
$$A \xrightarrow{f} B$$
, $B \xrightarrow{g} C$, $C \xrightarrow{h} D$,
$$h \circ (g \circ f) = (h \circ g) \circ f.$$

(ii) Unit laws

For all arrow
$$A \xrightarrow{f} B$$
,

$$f \circ \mathrm{id}_A = f = \mathrm{id}_B \circ f.$$

Definition of a Category 37/104

Definition of a Category

Observation

Some authors[†] state the unit laws in the following equivalent way:

For all arrows $A \xrightarrow{f} B$ and $B \xrightarrow{g} C$,

$$id_B \circ f = f,$$

 $g \circ id_B = g.$

Definition of a Category 38/104

[†]E.g. (Asperti and Longo 1980; Goldblatt 2006; Mac Lane 1998).

Definition of a Category

Observation

Note that the axioms in the definition of category are generalised monoid axioms.

Definition of a Category 39/104

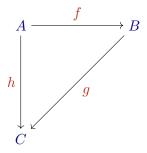
Commutativity of diagrams

A diagram commutes when every possible path from one object to other object is the same.

Diagrams in Categories 41/104

Basic cases

(i) Commutativity of a triangle

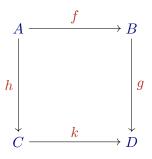


$$(h = g \circ f)$$

Diagrams in Categories 42/104

Basic cases

(v) Commutativity of a square

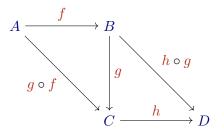


$$(g \circ f = k \circ h)$$

Diagrams in Categories 43/104

Example

Let $A \xrightarrow{f} B$, $B \xrightarrow{g} C$ and $C \xrightarrow{h} D$. The associativity of the composition is equivalent to say that the following diagram commutes.

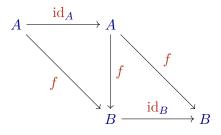


$$(h \circ (g \circ f) = (h \circ g) \circ f)$$

Diagrams in Categories 44/104

Example

Let $A \xrightarrow{f} B$. The unit of the identity arrow is equivalent to say that the following diagram commutes.



$$\left(f\circ \mathrm{id}_A=f=\mathrm{id}_B\circ f\right)$$

Diagrams in Categories 45/104

Example

The category $\mathbf{Set}\ \mathsf{of}\ \mathsf{sets}\ \mathsf{and}\ \mathsf{functions}.$

Examples of Categories 47/104

Example

Mathematical structures and structure preserving functions.

- Pos (partially ordered sets and monotone functions)
- Mon (monoids and monoid homomorphisms)
- **Grp** (groups and group homomorphisms)
- Top (topological spaces and continuous functions)

Examples of Categories 48/104

Example

Mathematical structures and structure preserving functions.

- Pos (partially ordered sets and monotone functions)
- Mon (monoids and monoid homomorphisms)
- **Grp** (groups and group homomorphisms)
- Top (topological spaces and continuous functions)

Exercise

Show that Pos, Mon, Grp and Top are categories (Exercise 6).

Examples of Categories 49/104

Observation

The arrows of a category do no have to be functions as shows the following example.

Examples of Categories 50/104

Example

The category Rel.

- The objects are sets.
- The arrows $X \xrightarrow{R} Y$ are the relations $R \subseteq X \times Y$.
- The arrow composition is the relation composition. Given $X \stackrel{R}{\longrightarrow} Y$ and $Y \stackrel{S}{\longrightarrow} Z$ then

$${\color{red} S} \circ {\color{blue} R} := \{\, (x,z) \in X \times Z \mid \text{there exists } y \in Y \text{ such as } (x,y) \in R \text{ and } (y,z) \in S \,\}.$$

ullet The identity arrow on X is the equality relation on X, that is

$$\operatorname{id}_X := \{ (x, x) \in X \times X \mid x \in X \}.$$

Examples of Categories 51/104

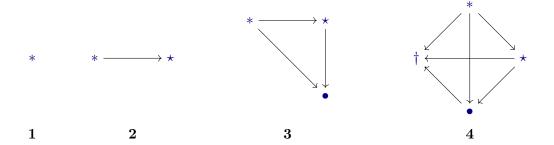
Observation

The objects of a category do no have to be sets as show the following examples.

Examples of Categories 52/104

Example

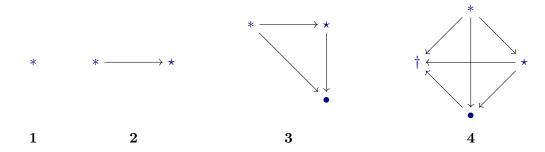
The categories 1, 2, 3 and 4. The diagrams do not show the identity arrows.



Examples of Categories 53/104

Example

The categories 1, 2, 3 and 4. The diagrams do not show the identity arrows.



Observation

The category \mathbf{n} has n(n+1)/2 arrows (Zeng n.d.).

Examples of Categories 54/104

Example

The empty category. It has no objects nor arrows.

Examples of Categories 55/104

Example

Any monoid is a one-object category.

• Arrows: Elements of the monoid

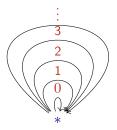
• Composition: Monoid binary operation

• Identity arrow: Monoid unit

Examples of Categories 56/104

Example

One-object category from monoid $(\mathbb{N}, +, 0)$.



$$\begin{pmatrix} 0+n=n\\ 1+1=2\\ 1+2=3\\ \vdots \end{pmatrix}$$

Examples of Categories 57/104

Example

Any pre-ordered set (P, \preceq) is a category.

• Objects: Elements of *P*

• Arrows: There is an arrow $A \to B$ iff $A \leq B$

• Composition: Binary relation \leq

• Identity arrow: The arrow $A \to A$ because $A \leq A$

Examples of Categories 58/104

Example

Any pre-ordered set (P, \preceq) is a category.

- Objects: Elements of *P*
- Arrows: There is an arrow $A \to B$ iff $A \leq B$
- Composition: Binary relation ≤
- Identity arrow: The arrow $A \to A$ because $A \leq A$

Observation

Note that the above category has at most one arrow between any two objects.

Examples of Categories 59/104

Example

Any category with at most one arrow between any two objects is a pre-order.

- Elements of the pre-order: Objects of the category
- Binary relation: $A \leq B$ iff there is an arrow $A \rightarrow B$

The relation \leq is transitive because the composition of functions and it is reflexive because the identity arrows.

Examples of Categories 60/104

Example

A category for a simple functional programming language given by (adapted from (Pierce 1991)):

- Types: Nat, Bool, Unit, $\cdot \rightarrow \cdot$
- Built-in functions:

```
	ext{isZero}: \mathtt{Nat} 	o \mathtt{Bool} \hspace{1cm} 	ext{(test for zero)} \\ 	ext{not}: \mathtt{Bool} 	o \mathtt{Bool} \hspace{1cm} 	ext{(negation)} \\ 	ext{succ}: \mathtt{Nat} 	o \mathtt{Nat} \hspace{1cm} 	ext{(successor)} \\ \end{aligned}
```

Constants

```
zero: Nat; true, false: Bool; unit: Unit.
```

(continued on next slide)

Examples of Categories 61/104

Example (continuation)

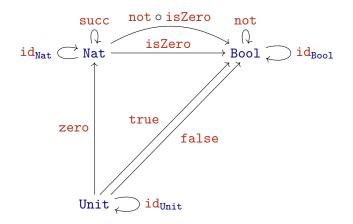
The category is given by:

- Objects: Types
- Arrows:
 - Built-in functions
 - The constants are arrows from Unit to the type of the constant
 - Add arrows required by arrow composition
- Identity arrows: Identity functions in each type
- Equating arrows that represent the same functions (according to the semantics of the language)

(continued on next slide)

Examples of Categories 62/104

Example (continuation)



Same functions

```
egin{aligned} & \operatorname{not} \circ \operatorname{true} = \operatorname{false} \\ & \operatorname{not} \circ \operatorname{false} = \operatorname{true} \\ & \operatorname{isZero} \circ \operatorname{zero} = \operatorname{true} \\ & \operatorname{isZero} \circ \operatorname{succ} = \operatorname{false} \\ & \operatorname{unit} = \operatorname{id}_{\operatorname{Unit}} \end{aligned}
```

Examples of Categories 63/104

Exercise

Show an example of a category from logic. See, e.g. (Awodey 2010, § 1.14. Example 10).

Examples of Categories 64/104

Example

Hask is the *idealised* category for the Haskell programming language.

- Objects: Haskell's (unlifted) types
- Arrows: Haskell's functions
- Composition:

```
(.) :: (b -> c) -> (a -> b) -> a -> c
g . f = \x -> g (f x)
```

• Identity arrow:

```
id :: a -> a
id x = x
```

Examples of Categories 65/104

Exercise

Given some implementation of categories in Haskell, show two examples of categories in that implementation.

Examples of Categories 66/104

Monomorphisms

Definition

Let $\mathcal C$ be a category and let $A \xrightarrow{f} B$ be an arrow in $\mathcal C$. The arrow f is **monic** (or a **monomorphism**) iff

for all
$$C \xrightarrow{g,h} A$$
, $f \circ g = f \circ h$ implies $g = h$,

that is.

$$C \xrightarrow{g} A \xrightarrow{f} B$$
 implies $g = h$,

where the above diagram commutes.

Isomorphisms 68/104

Epimorphisms

Definition

Let $\mathcal C$ be a category and let $A \xrightarrow{f} B$ be an arrow in $\mathcal C$. The arrow f is **epic** (or a **epimorphism**) iff

for all
$$B \xrightarrow{i,j} C$$
, $i \circ f = j \circ f$ implies $i = j$,

that is,

$$A \xrightarrow{f} B \xrightarrow{i} C$$
 implies $i = j$,

where the above diagram commutes.

Isomorphisms 69/104

Isomorphisms

Definition

Let $\mathcal C$ be a category. An arrow $A \stackrel{i}{\longrightarrow} B$ in $\mathcal C$ is an **isomorphism** (or **iso**) iff there exists an arrow $B \stackrel{j}{\longrightarrow} A$ in $\mathcal C$ such that

$$j \circ i = \mathrm{id}_A$$
 and $i \circ j = \mathrm{id}_B$.

Isomorphisms 70/104

Isomorphisms

Definition

Let $\mathcal C$ be a category. An arrow $A \stackrel{i}{\longrightarrow} B$ in $\mathcal C$ is an **isomorphism** (or **iso**) iff there exists an arrow $B \stackrel{j}{\longrightarrow} A$ in $\mathcal C$ such that

$$j \circ i = \mathrm{id}_A$$
 and $i \circ j = \mathrm{id}_B$.

The arrow j is the **inverse** of i and it is denoted by i^{-1} .

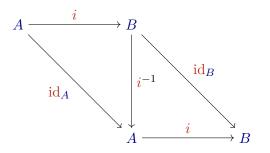
(continued on next slide)

Isomorphisms 71/104

Isomorphisms

Definition (continuation)

That is, an arrow $A \xrightarrow{i} B$ is an isomorphism iff there exists an arrow $B \xrightarrow{i^{-1}} A$ such that the following diagram commutes



$$\binom{i^{-1} \circ i = \mathrm{id}_A}{i \circ i^{-1} = \mathrm{id}_B}$$

Isomorphisms 72/104

Notation

An isomorphism $i:A\to B$ is denoted by $i:A\stackrel{\cong}{\longrightarrow} B.$

Isomorphisms 73/104

Notation

An isomorphism $i: A \to B$ is denoted by $i: A \stackrel{\cong}{\longrightarrow} B$.

Definition

Two objects A and B are **isomorphic**, written $A \cong B$, iff there exists $i : A \xrightarrow{\cong} B$.

Isomorphisms 74/104

Theorem

If an arrow has inverse it is unique.

Exercise

Proof the previous theorem (Exercise 10).

Isomorphisms 75/104

Exercise

Show that \cong is an equivalence relation on the objects of a category (Exercise 11).

Isomorphisms 76/104

Example

Isomorphisms in \mathbf{Set} and \mathbf{Rel} correspond to one-one correspondences (bijections).

Isomorphisms 77/104

Example

Isomorphisms in \mathbf{Grp} correspond to group isomorphisms, in \mathbf{Pos} to order isomorphisms and in \mathbf{Top} to homeomorphisms.

Isomorphisms 78/104

Example

Recall that any monoid is a one-object category. Any group is a one-object category in which every arrow is an isomorphism.

Isomorphisms 79/104

Example

Recall that any monoid is a one-object category. Any group is a one-object category in which every arrow is an isomorphism.

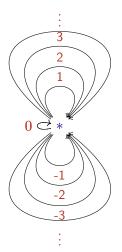
Exercise

Verify the previous example.

Isomorphisms 80/104

Example

One-object category from monoid $(\mathbb{Z}, +, 0)$.



$$\begin{pmatrix} 0+n=n \\ 1+1=2 \\ 1+2=3 \\ \vdots \\ 1+-1=0 \\ 2+-2=0 \\ \vdots \end{pmatrix}$$

Isomorphisms 81/104

Definition

A **groupoid** is a category in which every arrow is an isomorphism.

Isomorphisms 82/104

Example

A group is one-object grupoid.

Isomorphisms 83/104

Definition

A **setoid** (X, \sim) is a set X equipped with an equivalence relation \sim .

Isomorphisms 84/104

Definition

A **setoid** (X, \sim) is a set X equipped with an equivalence relation \sim .

Example

Given a setoid (X, \sim) we can define an associated grupoid.

ullet Objects: Elements of X

• Arrows: There is an arrow $x \to y$ iff $x \sim y$.

• Composition: From transitivity of \sim .

• Identity arrow: From reflexivity of \sim .

Isomorphisms 85/104

Theorem (Awodey (2010, Proposition 2.9))

If an arrow is iso then it is monic and epic.

Isomorphisms 86/104

Theorem (Awodey (2010, Proposition 2.9))

If an arrow is iso then it is monic and epic.

Exercise

Proof the previous theorem.

Isomorphisms 87/104

Example (Exercise 1.1.6.e)

In the category ${f Mon}$ of monoids and monoid homomorphisms, consider the inclusion map

$$i:(\mathbb{N},+,0)\to(\mathbb{Z},+,0)$$

of natural numbers into the integers. Show that this arrow is both monic and epic. Is it an iso?

Isomorphisms 88/104

Example (Exercise 1.1.6.e)

In the category ${f Mon}$ of monoids and monoid homomorphisms, consider the inclusion map

$$i: (\mathbb{N}, +, 0) \to (\mathbb{Z}, +, 0)$$

of natural numbers into the integers. Show that this arrow is both monic and epic. Is it an iso?

Solution

Whiteboard.

Isomorphisms 89/104

Example (Exercise 1.1.6.e)

In the category ${f Mon}$ of monoids and monoid homomorphisms, consider the inclusion map

$$i: (\mathbb{N}, +, 0) \to (\mathbb{Z}, +, 0)$$

of natural numbers into the integers. Show that this arrow is both monic and epic. Is it an iso?

Solution

Whiteboard.

Observation

As showed the previous exercises if an arrow is monic and epic does not imply that it is an iso.

Isomorphisms 90/104

Skeletal Categories

Definition

A category is **skeletal** iff isomorphic objects are always equals (Awodey 2010).

Isomorphisms 91/104

Opposite Categories and Duality

Opposite Categories and Duality

Introduction

We get a category from other category by turning around the arrows and then we get a duality principle between both categories.

Opposite Categories

Definition

Let C be a category. The **opposite** (or **dual**) category C^{op} of C is defined by

$$Obj(\mathcal{C}^{op}) := Obj(\mathcal{C}),$$

$$\mathcal{C}^{op}(A^*, B^*) := \mathcal{C}(B, A),$$

$$id_{A^*} := (id_A)^*,$$

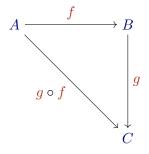
$$g^* \circ f^* := (f \circ g)^*,$$

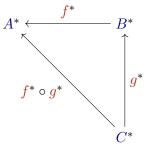
where we use * for distinguishing objects and arrows of the opposite category following (Awodey 2010).

Opposite Categories

Example

The left diagram in a category $\mathcal C$ corresponds to the right diagram in the category $\mathcal C^{\mathsf{op}}.$





The Duality Principle

Definition

Let S be a sentence. The dual statement S^{op} of S is the sentence obtained by reversing all the arrows of S.

Description

Let $\mathcal C$ be a category and S be a sentence. The **duality principle** states that

S holds in \mathcal{C} iff S^{op} holds in $\mathcal{C}^{\mathsf{op}}$.

The Duality Principle

Example

Monic and epic are dual notions. That is, an arrow f is monic in C iff f^* is epic in C^{op} .

Definition

A **subcategory** $\mathcal D$ of a category $\mathcal C$ is a collection of some of the objects and arrows of $\mathcal C$

$$Obj(\mathcal{D}) \subseteq Obj(\mathcal{C}),$$
$$Ar(\mathcal{D}) \subseteq Ar(\mathcal{C}),$$

which is closed under dom, cod, id, and \circ , that is,

$$f \in \operatorname{Ar}(\mathcal{D})$$
 implies $\operatorname{dom} f, \operatorname{cod} f \in \operatorname{Obj}(\mathcal{D}),$
 $f \in \mathcal{D}(A,B), g \in \mathcal{D}(B,C)$ implies $g \circ f \in \mathcal{D}(A,C),$
 $A \in \operatorname{Obj}(\mathcal{D})$ implies $\operatorname{id}_A \in \mathcal{D}(A,A).$

(continued on next slide)

Subcategories 99/104

Definition (continuation)

Additionally, the category ${\mathcal D}$ is

ullet a **full subcategory** of ${\mathcal C}$ iff

$$\mathcal{D}(A, B) = \mathcal{C}(A, B), \quad \text{for all } A, B \in \text{Obj}(\mathcal{D}),$$

ullet a **lluf subcategory** of ${\mathcal C}$ iff

$$Obj(\mathcal{D}) = Obj(\mathcal{C}).$$

Subcategories 100/104

Example

 \mathbf{Grp} is a full subcategory of $\mathbf{Mon}.$

Subcategories 101/104

Example

Grp is a full subcategory of **Mon**.

Example

 \mathbf{Set} is a lluf subcategory of $\mathbf{Rel}.$

Subcategories 102/104

References

References

- S. Abramsky and N. Tzevelekos (2011). Introduction to Categories and Categorical Logic. In: New Structures for Physics. Ed. by Bob Coecke. Vol. 813. Lecture Notes in Physics. Springer, pp. 3–94. DOI: 10.1007/978-3-642-12821-9_1 (cit. on p. 2).
- Andrea Asperti and Guiseppe Longo (1980). Categories, Types, and Structures. MIT Press (cit. on p. 38).
- Steve Awodey [2006] (2010). Category Theory. 2nd ed. Vol. 52. Oxford Logic Guides. Oxford University Press (cit. on pp. 11, 15, 64, 86, 87, 91, 94).
- Robert Goldblatt [1979] (2006). Topoi. The Categorical Analysis of Logic. Revised edition. Dover Publications (cit. on p. 38).
- Saunders Mac Lane [1971] (1998). Categories for the Working Mathematician. 2nd ed. Springer (cit. on pp. 10, 38).
- Benjamin C. Pierce (1991). Basic Category Theory for Computer Scientists. Foundations of Computing Series. MIT Press (cit. on p. 61).
- W. J. Zeng (n.d.). A Subtle Introduction to Category Theory. (Cit. on pp. 53, 54).

References 104/104