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Preliminaries

Convention
The number assigned to chapters, examples, exercises, figures, pages, sections, and theorems

on these slides correspond to the numbers assigned in the textbook [Abramsky and Tzevelekos
2011].
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Introduction

Question
What about of morphisms between categories?
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Introduction

Question
What about of morphisms between categories?

Answer: Of course, them are functors.
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Definition of a Functor

Definition
A (covariant) functor F' : C — D between categories C and D is a mapping of objects to
objects and arrows to arrows, that is,

Fy : Obj(C) — Obj(D) (object-map),
Fy: Ar(C) — Ar(D) (arrow-map),

which for all objects A, B and C' in Obj(C) and for all arrows A i) Band B-% Cin Ar(C),
satisfies the functoriality conditions

Fi(gof)=(Fig)o(Fif) (preservation of compositions),
Fridg = id(g, a) (preservation of identities).

tThe textbook does not use Fiy, and F; but F.
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Definition of a Functor

Remark
The functor F' : C — D maps objects and arrows of C to objects and arrows of D, respectively.

>}
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Definition of a Functor

Remark
The functor /' : C — D preserves domains and codomains, identity arrows, and composition. It

also maps each commutative diagram in C into a commutative diagram in D.

D
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Definition of a Functor

Remark
Given a functor F': C — D, that is,

Fy : Obj(C) — Obj(D),
Fi: Ar(C) — Ar(D),

for all A, B in Obj(C), there is the map
E&,B : C(A,B) — D(FU A,Fo B),

and forall f: A— B,
P;l,B fFQA-)F()B
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Examples of Functors

Example
Let P .S be the power set of the set S. The (covariant) power set functor

P : Set — Set, is defined by
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Examples of Functors

Example
Let P .S be the power set of the set S. The (covariant) power set functor

P : Set — Set, is defined by

Py : Obj(Set) — Obj(Set)
PU X = PX
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Examples of Functors

Example
Let P .S be the power set of the set S. The (covariant) power set functor

P : Set — Set, is defined by
Py : Obj(Set) — Obj(Set) Py : Ar(Set) — Ar(Set)
Py X =PX Pyy :Set(X,Y) — Set(/h X, YY)

Pey [:PX > PY
Pey [S:=[(8)={/[(z) |z S5}

(continued on next slide)
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Examples of Functors

Example (continuation)

Let X ={0,1}, Y ={0,X} and f: X — Y defined by f(0) =0 and f(1) = X. Then,

Py : Obj(Set) — Obj(Set)

Py X =PX ={0,{0},{1}, X},

Examples of Functors

Pey [t PX —=PY

Py [0 = [(0) =0,
Pyy 110} =f({ H = {0},
ny{l} = f({1}) = {X},

v 10,1} == f({0,1}) = {0, X}
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Examples of Functors

Example
Let (P, <) and (Q, <) be two pre-orders seen as categories, denoted P and Q, respectively. A

functor I : P — Q is defined by
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Examples of Functors

Example
Let (P, <) and (Q, <) be two pre-orders seen as categories, denoted P and Q, respectively. A

functor I : P — Q is defined by

Fy : Obj(P) — Obj(Q)
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Examples of Functors

Example
Let (P, <) and (Q, <) be two pre-orders seen as categories, denoted P and Q, respectively. A

functor I : P — Q is defined by

Fy : Obj(P) — Obj(Q) Fy : Ar(P) — Ar(Q)
FA,B : P(A,B) — Q(FU A,Fo B)

E47Bf:F0A—>FOB

Examples of Functors 19/98



Examples of Functors

Example
Let (P, <) and (Q, <) be two pre-orders seen as categories, denoted P and Q, respectively. A
functor I : P — Q is defined by

Fy : Obj(P) — Obj(Q) Iy o Ar(P) — Ar(Q)
FA,B : P(A,B) — Q(FU A,Fo B)

EA,Bf : FQA-)F()B
Since P(A, B) and Q(I') A, Iy B) have at most an arrow, the map F, , exists iff

A=< B implies FyA=FyB.
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Examples of Functors

Example
Let (P, =) and (Q, <) be two pre-orders seen as categories, denoted P and Q, respectively. A
functor I : P — Q is defined by

Fy : Obj(P) — Obj(Q) Iy o Ar(P) — Ar(Q)
FA,B : P(A,B) — Q(FU A,Fo B)

EA,Bf : FQA-)FQB
Since P(A, B) and Q(I') A, Iy B) have at most an arrow, the map F, , exists iff
A=< B implies FyA=FyB.

That is, a functor F': P — Q is just a monotone map which sends, if exists, the unique arrow
A — B to the unique arrow Fy A — Fy B.
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Examples of Functors

Example
Let (P, =) and (Q, <) be two pre-orders seen as categories, denoted P and Q, respectively. A
functor I : P — Q is defined by

Fy : Obj(P) — Obj(Q) Iy o Ar(P) — Ar(Q)
FA,B : P(A,B) — Q(FU A,Fo B)

EA,Bf : FQA-)FQB
Since P(A, B) and Q(I') A, Iy B) have at most an arrow, the map F, , exists iff
A=< B implies FyA=FyB.

That is, a functor F': P — Q is just a monotone map which sends, if exists, the unique arrow
A — B to the unique arrow Fy A — Fy B.

Example from [Fong, Milewski and Spivak 2020, § 3.2.2].
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Examples of Functors

Example
Let (M, -, €) and (N, o, ) be two monoids seen as categories, denoted M and N, respectively.
Let * be the only object in both categories. A functor F': M — N is defined by
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Examples of Functors

Example
Let (M, -, €) and (N, o, ) be two monoids seen as categories, denoted M and N, respectively.
Let * be the only object in both categories. A functor F': M — N is defined by

Fy : Obj(M) — Obj(N)
Fy : {x} = {x}
Fox =%
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Examples of Functors

Example
Let (M, -, €) and (N, o, ) be two monoids seen as categories, denoted M and N, respectively.
Let * be the only object in both categories. A functor F': M — N is defined by

Fy : Obj(M) — Obj(N) Fy i Ar(M) — Ar(N)
Fo = {x) = {+} B2 Pl %) = Q(Fo*, Lo *)
Fox = E,[ix—x
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Examples of Functors

Example
Let (M, -, €) and (N, o, ) be two monoids seen as categories, denoted M and N, respectively.
Let * be the only object in both categories. A functor F': M — N is defined by

Fy : Obj(M) — Obj(N) Fy i Ar(M) — Ar(N)
Fo = {x) = {+} B2 Pl %) = Q(Fo*, Lo *)
Fox = E,[ix—x

The functor I must satisfies:

my) o (F, ma), for all mq, ms in M,

* %k

E ., (my-mg) =
€
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Examples of Functors

Example
Let (M, -, €) and (N, o, ) be two monoids seen as categories, denoted M and N, respectively.
Let * be the only object in both categories. A functor F': M — N is defined by

Fy : Obj(M) — Obj(N) Fy i Ar(M) — Ar(N)
Fo = {x) = {+} B2 Pl %) = Q(Fo*, Lo *)
Fox = E,[ix—x

The functor I must satisfies:

my) o (F, ma), for all mq, ms in M,

* %k * %k

E ., (my-mg) =
€

That is, a functor /' : M — A is just a monoid homomorphism.
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Examples of Functors

Example
The identity functor Id¢ : C — C in a category C is the functor that maps each object and

each arrow of C to itself.
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Examples of Functors

Example
Let /' : Mon — Set be the forgetful functor which
(i) sends a monoid to its set of elements and

(ii) sends a homomorphism between monoids to the corresponding function between sets.
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Examples of Functors

Example
Let [S] be the set of all finite lists of elements of S. The list functor

List : Set — Set, is defined by
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Examples of Functors

Example
Let [S] be the set of all finite lists of elements of S. The list functor

List : Set — Set, is defined by

Listg : Obj(Set) — Obj(Set)
Listg X := [X]
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Examples of Functors

Example
Let [S] be the set of all finite lists of elements of S. The list functor

List : Set — Set, is defined by

Listg : Obj(Set) — Obj(Set) List; : Ar(Set) — Ar(Set)
Listo X := [X] Listy y : Set(X,Y) — Set(Listg X, Listg )
Listyy f: [X] = [Y]
LiStX,y f [xla T2y 7$n] = []L(xl)a f(fEQ), ) f(xn)]
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Examples of Functors

Example
The free monoid functor MList : Set — Mon maps every set X to the free monoid over X.
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Examples of Functors

Example
The free monoid functor MList : Set — Mon maps every set X to the free monoid over X.

Let (—) * (—) be the list concatenation function and let ¢ be the empty list, the functor is
defined by
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Examples of Functors

Example
The free monoid functor MList : Set — Mon maps every set X to the free monoid over X.

Let (—) * (—) be the list concatenation function and let ¢ be the empty list, the functor is
defined by

MListg  : Obj(Set) — Obj(Mon)
MListg X := (LiSto X, *,E)
= ([X],%¢)
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Examples of Functors

Example
The free monoid functor MList : Set — Mon maps every set X to the free monoid over X.

Let (—) * (—) be the list concatenation function and let ¢ be the empty list, the functor is
defined by

MListyg  : Obj(Set) — Obj(Mon) MlList; : Ar(Set) — Ar(Mon)

MListg X := (Listg X, x,¢) MListy , : Set(X,Y) — Mon(MListo X, MListo Y')
= (|X . .
(1X],%.€) MListy . f : ([X],%,€) = (Y], %¢)
MListy  f [z1,%2,...,2p] := Listy . f |21, 22,..., 20]
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Exercises

Exercise 1
Verify that functors F': 2. — Set correspond to directed graphs (textbook, Exercise 45).
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Functors in Haskell

Introduction via Maybe
(Whiteboard).
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Functors in Haskell

Introduction via Maybe
(Whiteboard).

The typeclass Functor

class Functor f where
fmap :: (a -> b) -> f a -> £ b

Functors in Haskell 40/98



Functors in Haskell

Example
The polymorphic type constructor Maybe is a functor whose instance is defined by

instance Functor Maybe where
fmap _ Nothing Nothing
fmap £ (Just a) Just (f a)
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Functors in Haskell

Example
The polymorphic type constructor Maybe is a functor whose instance is defined by

instance Functor Maybe where
fmap _ Nothing = Nothing
fmap £ (Just a) = Just (f a)

Exercise 2
Show that the Maybe functor satisfies the functoriality conditions.
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Functors in Haskell

Example
ReadInt is a type constructor that turns any type a into a new type that reads a value of Int

to create a value of a [Fong, Milewski and Spivak 2020, Example 3.41].

data ReadInt a = MkReadInt (Int -> a)
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Functors in Haskell

Example
ReadInt is a type constructor that turns any type a into a new type that reads a value of Int
to create a value of a [Fong, Milewski and Spivak 2020, Example 3.41].

data ReadInt a = MkReadInt (Int -> a)

ReadInt is a functor via the following instance.

instance Functor ReadInt where
fmap f (MkReadInt g) = MkReadInt (f . g)

44/98
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Functors in Haskell

Example
The (binary) function type (=>) :: a -> b -> (a -> b) is a functor.

instance Functor ((->) a) where
fmap £f g = £f . g

Note that fmap :: (b -> ¢) -> (a -> b) -> (a -> ¢).
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Functors in Haskell

Exercise 3
To define an instance of Functor for the (binary) product type (,) :: a -> b -> (a,b).
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Functors in Haskell

Example
Recall that terminal object (unit type) in Haskell is () : : (). We can define a constant functor by

data CUnit a = MkCU ()

instance Functor CUnit where
fmap £ (MkCU ()) = MkCU ()

Functors in Haskell 47/98



Functors in Haskell

Exercise 4
Given a constant ‘functor’ defined by

data CBool a = MkCB Bool

instance Functor CBool where
fmap f (MkCB True) = MkCB False
fmap f (MkCB False) = MkCB True

Is CBool really a functor?

Functors in Haskell
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Functors in Haskell

Exercise 5
We define a constant functor by

data CInt a = MkCI Int

Show that the polymorphic type constructor CInt can be given the structure of a functor
by saying how it lifts morphisms. That is, provide a Haskell function mapCInt of the type
(a => b) -> (CInt a -> CInt b) [Fong, Milewski and Spivak 2020, Exercise 3.46].
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Functors in Haskell

Exercise 6

For each of the following type constructors, define two versions of fmap, one of which has a
corresponding functor Hask — Hask, and one of which does not [Fong, Milewski and Spivak

2020, Exercise 3.48].

(i) data WithString a = WithStr (a, String)
(i) data ConstStr a = ConstStr String

(iii) data List a = Nil | Comns (a, List a)

Functors in Haskell
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The Product Category

Definition
Let C and D be two categories. The product category C x D is defined by:
(i) Objects: (C, D), where C' and D are objects in C and D, respectively.

(i) Arrows: (C, D) M (C', D), where C i> C" and D ~L5 D’ are arrows in C and D,
respectively.
(iii) Composition

(f,9) o (fr9):=(fof,d og).

(iv) Identities
id(C’,D) = (ldC,ldD)
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Definition of a Binary Functor

Definition
Let C, D and & be three categories. A binary functor (or bifunctor) is a functor whose domain
is a product category, that is, a binary functor from C x D to £ is a functor

F:CxD— €.
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Example of Binary Functors

Example
The projection functors C <~ C x D —= D are binary functors.
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Example of Binary Functors

Example
The projection functors C <~ C x D —= D are binary functors.
(i) For 71 : C x D — C we have:

(m1)o : Obj(C x D) — ODbj(C)

(m1)o(C, D) :=C

(m1)1 : Ar(C x D) — Ar(C)

(1) : Morexp((C, D), (C", D)) — Morc((m1)o (C, D), (m1)o (C', D)),

T1)c,py,c’,p

C !
1) (e,py, (¢!, D" (f,9):C—=C

(T1>(C,D),(C’,D’) (f?g) = f
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Example of Binary Functors

Example
The projection functors C <~ C x D —= D are binary functors.
(i) For 71 : C x D — C we have:

7T1)0 Ob (C X D) — ObJ(C)
m)o(C, D) :=C
7T1)1 Ar (C X D) — Ar(C)

)

(
(
(
( MorCXD((C7 D)a (0/7 D,)) - MOTC«Wl)O (07 D)a (77—1)0 (Clv D,))a

1

(c,D),(C’,D’)

(ﬂ—l)(C,D),(C’,D/) (f7(]) C = '
(m><c,D),(c/,D/) (f.9)=Ff

(ii) Similarly for m5 : C x D — D.
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The Product Functor

Definition
Let C be a category with binaries products, and let C x C be the product category of C with
itself. The product functor x : C x C — C is a binary functor defined by
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The Product Functor

Definition

Let C be a category with binaries products, and let C x C be the product category of C with

itself. The product functor x : C x C — C is a binary functor defined by
X : Obj(C x C) — Obj(C)
%0 (A, B) :== A x B (binary product)

x1:Ar(C x C) — Ar(C)
X s L C X C(4, AN, (B,B") — C(x (A, A", <o (B, B"))

x1(f:A—B,g: A —-B):AxA - BxB
x1(f:A— B,g: A= B'):= f x g (product morphish)

where [ x g := (f om,gom).

(continued on next slide)

Binary Functors
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The Product Functor

Definition (continuation)

That is, both squares in the following diagram commute.
st 2
A Ax A A
f [y g
/ !/
B - B x B P B

Binary Functors

(

fom =mo(fxg)
gomy =m0 (f X g)
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N-Ary Functors

Remark
Binary functors can be generalised to n-ary functors.
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Small and Large Categories

Introduction

Before defining a category of categories, we need to classify the categories in small and large
for avoiding that it be an object of itself.
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Small and Large Categories

Definition
A category is small iff the collection of its objects and the collection of its arrows are
Otherwise, the category is large [Awodey 2010)].
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Small and Large Categories

Example
The finite categories 1,2,...,n, a monoid viewed as a category, and a pre-order viewed as a
category are small categories.
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Small and Large Categories

Example
The finite categories 1,2,...,n, a monoid viewed as a category, and a pre-order viewed as a
category are small categories.

Example
The categories Set, Pos, Mon, Grp and Top are large categories.
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Locally Small Categories

Definition
A category C is locally small iff for all objects A, B the collection C(A, B) is a set [Awodey

2010].
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Locally Small Categories

Definition
A category C is locally small iff for all objects A, B the collection C(A, B) is a [Awodey

2010].

Remark
» Recall from the previous conventions that if the collection C(A, B) is a set it is called a

hom-set and it is denoted hom¢ (A, B).
» Also recall that in the textbook all the collections C(A, B) are hom-sets.

Small, Large and Locally Small Categories 67/98



Locally Small Categories

Example
Any small category is locally small.
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Locally Small Categories

Example
Any small category is locally small.

Example
The categories Set, Pos, Mon, Grp and Top are locally small categories.
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The Category of Small Categories

Definition

The category Cat is the category of small categories:
(i) Objects: Small categories

(ii) Arrows: Functors

(continued on next slide)
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The Category of Small Categories

Definition (continuation)

(iii) Composition of functors

Let C, D and £ be small categories and let /' : C — D and GG : D — £ be two functors,

then

The Category of Small Categories

GoF :C— €,

(GoF)y  :O0bj(C) — Obj(€)

(GoF)A :=Go(FyA),

(GoF)y  :Ar(C) — Ar(E),

(GoF),p, :C(AB)—=E(GoF)A,(GoF)B)
(GoF),pf:Go(foA)— Go(FoB)
(GoF),pf:=GCG1(If).
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The Category of Small Categories

Definition (continuation)

(iii) Composition of functors
That is,
A G (FA),

GoF:C%E::{
f=G(Ff).
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The Category of Small Categories

Definition (continuation)

(iii) Composition of functors
That is,
GoF:iC—& = {AHG(FA)’
e G(E ).

(iv) Identity functors
Let C be a small category, then

A A

idc:C—>C::{
[
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The Category of Small Categories

Remark
The category Cat is large and therefore it is not object of itself.
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Introduction

Description
A covariant functor I preserves the direction of arrows, that is,

Fy (fA—)B) Fy A — Fy B.
A contravariant functor GG reverses the direction of arrows, that is,

Gl(fi:A%B):GoB—)GQA.
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Contravariant Functors

Definition
Let C and D be two categories. A contravariant functor GG from C to D is a functor

G:C®? D (orC— D),

G : Obj(C°?) — Obj(D) (object-map),
G : Ar(C°P) — Ar(D) (arrow-map),
GA,B : COP(A, B) — D(G() B, G() A)

GAnyZGUB%GUA,

which for all objects A, B and C in Obj(C°P) and for all arrows A i> Band B % C
in Ar(C°P), satisfies the functoriality conditions

Gi(go f)
G (id4)

Contravariance 78/98

(G1 f)o(G19) (preservation of compositions),

id(g, ) (preservation of identities).



Contravariant Functors

Example
Let P S be the power set of the set S. The contravariant power set functor

P°P : Set®® — Set, is defined by
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Contravariant Functors

Example
Let P S be the power set of the set S. The contravariant power set functor

P°P : Set®® — Set, is defined by

PP . Obj(Set®) — Obj(Set)
PPX:=PX
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Contravariant Functors

Example
Let P S be the power set of the set S. The contravariant power set functor

P°P : Set®® — Set, is defined by
PSP : Obj(Set®) — Obj(Set) PP Ar(Set®P) — Ar(Set)
PPX =PX PP, Set®(X,Y) = Set(P° Y, PSP X)

PP L, [iPY 5 PX
PP T =" T)={zeX|[f(x)eT}

Contravariance 81/98
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Hom-Functors

Definition (first notation)

Let C be a locally small category and let A be an object of C. The covariant Set-valued
hom-functor C(A, —) is defined by

C(A,—):C — Set,

C(A, )y : Obj(C) — Obj(Set)
C(A.C)y:=C(A,C),

C(A,—)1: Ar(C) — Ar(Set)

C(A, =)ep :C(C,D) = Set(C(A, —)oC,C(A, —)o D)
(A flep 1 C(A,C) = C(A, D)

(A f)cD g=/fogy.
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Hom-Functors

Definition (first notation)

Let C be a (locally small) category and let B be an object of C. The contravariant Set-valued
hom-functor C(—, B) is defined by

C(—.B): C% — Set,

C(—, B)y : Obj(C°®) — Obj(Set)
C(C, B)y = C(C, B),

C(—, B); : Ar(C%) — Ar(Set)
C(—, B).p : CP(C, D) = Set(C(—, B)y D,C(—, B), C)
(
(
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Hom-Functors

Exercise 7
Let C be a (locally small) category. Spell out the definition of the set-valued hom-functor

C(—,—) :C° x C — Set. Verify carefully that it is a functor (textbook, Exercise 47).

N
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Hom-Functors

Notation
Recall that if C is a locally small category the collection of arrows of an object A to an object B
is a set and it is denoted by hom¢ (A, B), that is,

home(A, B) = { f € Ar(C) ‘ RN B}:: c(4, B).

Hom-Functors 86/98



Hom-Functors

Definition (second notation)

Let C be a locally small category and let A be an object of C. The covariant Set-valued
hom-functor hom¢ (A, —) is defined by

home (A, —) : C — Set,

home (A, —)o : Obj(C) — Obj(Set)
home (A, C)y := home (A, C)

home(A, —); : Ar(C) — Ar(Set)

home (A, —)e,p : home(C, D) — Set(home (A, C), home (A, D))
(4,
e (A,
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Hom-Functors

Definition (second notation)

Let C be a (locally small) category and let B be an object of C. The contravariant Set-valued
hom-functor hom¢(—, B) is defined by

Hom-Functors

home(—, B) : C°P — Set,

home(—, B)p : Obj(C°P) — Obj(Set)
home (C, B)g := hom¢(C, B)

home(—, B); @ Ar(C°P) — Ar(Set)

home(—, B)e,p : homcepy (C, D) — Set(home (D, B), home(C, B))
(
(

home(f : C — D, B) : home(D, B) — home(C, B)
home(f:C — D,B)g:=go f
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Faithful and Full Functors

Definition
Let C and D be (locally small) categories and let F': C — D be a functor.

(i) The functor I is faithful iff each map F, , : C(A, B) — D(Fy A, Iy B) is injective.
(i) The functor F'is full iff each map F, , : C(A B) — D(Fy A, Iy B) is surjective.
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Faithful and Full Functors

Example
The forgetful functor /' : Mon — Set is faithful, but not full (explanation in the whiteboard).
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Faithful and Full Functors

Example
The forgetful functor F': Mon — Set is faithful, but not full (explanation in the whiteboard).
Let (M,-,15) and (N, *,1x) be two monoids and let f : M — N be a homomorphism between
them.
» Since F| f = f, the map F} is injective.
» If g: M — N is any function in Set such that ¢ (157) # 1y, then g is not a homomorphism
between (M, -, 157) and (N, *,1x). Therefore the map £ is not surjective.
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Faithful and Full Functors

Exercise 8
Show that the free monoid functor MList : Set — Mon is faithful, but not full.

Exercise 9 (1.3.5.2)
Let C be a category with binary products such that, for each pair of objects A, B,

C(A,B) # 0. *)

(i) Show that the product functor x : C x C — C is faithful.
(i) Would —x— still be faithful in the absence of condition (*)?
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Preservation and Reflection

Definition
Let P be a property of arrows and let F': C — D be a functor.
(i) The functor F' preserves the property P iff
if f satisfies P then [ f satisfies P.

(i) The functor I reflects the property P iff
if Iy [ satisfies P then f satisfies P.
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Preservation and Reflection

Example
Show that all functors preserve isomorphisms.
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Preservation and Reflection

Example
Show that all functors preserve isomorphisms.

Example
Show that full and faithful functors reflect isomorphisms.
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