
Category Theory and Functional Programming
Course Introduction

Andrés Sicard-Ramírez

Universidad EAFIT

Semester 2022-2

Pedagogical Pact
Course web page
https://asr.github.io/category-theory/

Exams, text book, programming labs, etc.
See course web page.

Evaluación a la docencia
La evaluación a la docencia es obligatoria

Pedagogical Pact 2/59

https://asr.github.io/category-theory/

Preliminaries
Convention
The number assigned to chapters, examples, exercises, figures, pages, sections, and theorems
on these slides correspond to the numbers assigned in the textbook [Abramsky and Tzevelekos
2011].

Pedagogical Pact 3/59

About Category Theory

About Category Theory
Category theory as the essence of composition
In category theory we shall talk about objects and arrows between them.

A
f−→ B

subject objects arrows
set theory sets functions
logic propositions conditional proofs
programming languages types programs
quantum mechanics systems processes

About Category Theory 5/59

About Category Theory
Category theory as the essence of composition
In category theory we shall talk about objects and arrows between them.

A
f−→ B

subject objects arrows
set theory sets functions
logic propositions conditional proofs
programming languages types programs
quantum mechanics systems processes

About Category Theory 6/59

About Category Theory
Category theory as the essence of composition
In category theory we shall talk about objects and arrows between them.

A
f−→ B

subject objects arrows
set theory sets functions
logic propositions conditional proofs
programming languages types programs
quantum mechanics systems processes

About Category Theory 7/59

About Category Theory
Informal description
In the introduction of their article, Abramsky and Tzevelekos [2011, p. 4] wrote:

Category theory can be seen as a ‘generalised theory of functions’, where the focus
is shifted from the pointwise, set-theoretic view of functions to an abstract view of
functions as arrows.

About Category Theory 8/59

About Category Theory
Remark
The ‘modern’ definition of function is from Dirichlet who in 1837 wrote: ‘If a variable y is so
related to a variable x that whenever a numerical value is assigned to x, there is a rule according
to which a unique value of y is determined, then y is said to be a function of the independent
variable x.’ [Merzcbach and Boyer 2011, p. 452].

About Category Theory 9/59

About Category Theory
Informal description
In the introduction of his book, Awodey [2010, p. 1] wrote:

As a first approximation, one could say that category theory is the mathematical study
of (abstract) algebras of functions [. . .] We think of the composition g ◦ f as a sort of
‘product’ of the functions f and g, and consider abstract ‘algebras’ of the sort arising
from collections of functions.

About Category Theory 10/59

About Category Theory
Informal description
D. S. Scott [1980] wrote:

General category theory provides a much purer theory of functions than set theory.
Category theory gives a theory of functions [arrows] under composition and is also a
theory of types.

About Category Theory 11/59

About Category Theory
Beginning
In Stanford Encyclopedia of Philosophy’s entry to Category Theory, Marquis [2021, § 2] wrote:

Categories, functors, natural transformations, limits and colimits appeared almost out
of nowhere in a paper by Eilenberg & Mac Lane (1945) entitled ‘General Theory of
Natural Equivalences’ [. . .] The central notion at the time, as their title indicates,
was that of natural transformation. In order to give a general definition of the latter,
they defined functor, borrowing the term from Carnap, and in order to define functor,
they borrowed the word ‘category’ from the philosophy of Aristotle, Kant, and C. S.
Peirce, but redefining it mathematically.

About Category Theory 12/59

About Category Theory
An approach
In the introduction to the nice tutorials in [Pitt, Abramsky, Poigné and Rydeheard 1986], it is
pointed out that [Abramsky 1986, p. 4]:

Perhaps the aspect which will excite most comment is the use of functional program-
ming to motivate category theory [. . .] The idea, following [D. S. Scott 1980], is that
a category is viewed as a collection of types and typed functions, i.e. an abstract
functional programming language. A great deal of special categorical structure [. . .]
can be interpreted in the programming context; while Backus’ arguments in favour of
‘function-level reasoning’ [Backus 1978] can be seen as a special case of ‘Lawvere’s pro-
gram’ of replacing sets and elements by functions [. . .]. However, it should certainly
be emphasized that there is more to category theory than functional programming;
most notably, there are universal constructions.

A similar approach is also followed in [Poigné 1992].

About Category Theory 13/59

About Category Theory
An approach
In the introduction to the nice tutorials in [Pitt, Abramsky, Poigné and Rydeheard 1986], it is
pointed out that [Abramsky 1986, p. 4]:

Perhaps the aspect which will excite most comment is the use of functional program-
ming to motivate category theory [. . .] The idea, following [D. S. Scott 1980], is that
a category is viewed as a collection of types and typed functions, i.e. an abstract
functional programming language. A great deal of special categorical structure [. . .]
can be interpreted in the programming context; while Backus’ arguments in favour of
‘function-level reasoning’ [Backus 1978] can be seen as a special case of ‘Lawvere’s pro-
gram’ of replacing sets and elements by functions [. . .]. However, it should certainly
be emphasized that there is more to category theory than functional programming;
most notably, there are universal constructions.

A similar approach is also followed in [Poigné 1992].

About Category Theory 14/59

An Application: Semantics of Programming
Languages

An Application: Semantics of Programming Languages
Approaches
There are various approaches for defining the meaning of programming languages (that is, of
programs written in them).

▶ Operational semantics
The meaning of a programming language is defined via an abstract machine for it.

▶ Axiomatic semantics
The meaning of a term is exactly what can be proved about it in some programming logic.
The meaning of a programming language is defined via axioms and inference rules.

▶ Denotational semantics
The meaning of a term is a mathematical object. The meaning of a programming language
is defined via semantics domains and interpretation functions.

An Application: Semantics of Programming Languages 16/59

An Application: Semantics of Programming Languages
Approaches
There are various approaches for defining the meaning of programming languages (that is, of
programs written in them).

▶ Operational semantics
The meaning of a programming language is defined via an abstract machine for it.

▶ Axiomatic semantics
The meaning of a term is exactly what can be proved about it in some programming logic.
The meaning of a programming language is defined via axioms and inference rules.

▶ Denotational semantics
The meaning of a term is a mathematical object. The meaning of a programming language
is defined via semantics domains and interpretation functions.

An Application: Semantics of Programming Languages 17/59

An Application: Semantics of Programming Languages
Approaches
There are various approaches for defining the meaning of programming languages (that is, of
programs written in them).

▶ Operational semantics
The meaning of a programming language is defined via an abstract machine for it.

▶ Axiomatic semantics
The meaning of a term is exactly what can be proved about it in some programming logic.
The meaning of a programming language is defined via axioms and inference rules.

▶ Denotational semantics
The meaning of a term is a mathematical object. The meaning of a programming language
is defined via semantics domains and interpretation functions.

An Application: Semantics of Programming Languages 18/59

An Application: Semantics of Programming Languages
Remark
In relation to the semantics approaches, Scott wrote [Shustek 2022, p. 29]:

I would say today that axiomatic, denotational, operational semantics all meld to-
gether, and the question is to take which aspects you want for an analysis or a proof,
or for giving the foundations for some kind of implementation. You choose what is
appropriate for the thing you want to accomplish.

An Application: Semantics of Programming Languages 19/59

An Application: Semantics of Programming Languages
Remark
Domain theory (see, e.g. [Mitchell 1996; Plotkin 1992]) and category theory are often used for
defining denotational semantics of functional languages.

An Application: Semantics of Programming Languages 20/59

Reading and Exercises

Reading
Reading
Chapters 1 and 2 from [Milewski 2019].

Reading and Exercises 22/59

Exercises

A category consists of objects and arrows (morphisms). Arrows can be composed, and
the composition is associative. Every object has an identity arrow that serves as a unit
under composition. (Milewski [2019, p. 8])

Exercise 1
Is the world-wide web a category in any sense? Are links morphisms? [Milewski 2019, Chal-
lenge 1.4.4].

Exercise 2
Is Facebook a category, with people as objects and friendships as morphisms? [Milewski 2019,
Challenge 1.4.5].

Exercise 3
When is a directed graph a category? [Milewski 2019, Challenge 1.4.6].

Reading and Exercises 23/59

Types

Types

Mathematics
A type is a range of significance of a propositional function. Let φ(x) be a (unary) propositional
function. The type of φ(x) is the range within which x must lie if φ(x) is to be a proposi-
tion [Russell 1938, Appendix B: The Doctrine of Types].

In modern terminology, Rusell’s types are domains of propositional functions.

Example
Let φ(x) be the propositional function ‘x is a prime number’. Then φ(x) is a proposition only
when its argument is a natural number.

φ : N → {False, True}
φ(x) := x is a prime number.

Types 25/59

Types
Mathematics
A type is a range of significance of a propositional function. Let φ(x) be a (unary) propositional
function. The type of φ(x) is the range within which x must lie if φ(x) is to be a proposi-
tion [Russell 1938, Appendix B: The Doctrine of Types].

In modern terminology, Rusell’s types are domains of propositional functions.

Example
Let φ(x) be the propositional function ‘x is a prime number’. Then φ(x) is a proposition only
when its argument is a natural number.

φ : N → {False, True}
φ(x) := x is a prime number.

Types 26/59

Types
Mathematics
A type is a range of significance of a propositional function. Let φ(x) be a (unary) propositional
function. The type of φ(x) is the range within which x must lie if φ(x) is to be a proposi-
tion [Russell 1938, Appendix B: The Doctrine of Types].

In modern terminology, Rusell’s types are domains of propositional functions.

Example
Let φ(x) be the propositional function ‘x is a prime number’. Then φ(x) is a proposition only
when its argument is a natural number.

φ : N → {False, True}
φ(x) := x is a prime number.

Types 27/59

Types
Programming languages

A type system is a tractable syntactic method for proving the absence of certain
program behaviors by classifying phrases according to the kinds of values they compute.
(Pierce [2002, p. 1])

▶ Type systems can be use for reasoning (internal o externally) about programs.
▶ In general, types are compositional.
▶ Types systems are conservative.
▶ Type systems can be use for facilitating large-scale software composition (handling

higher-level modularity and user-defined abstractions).
▶ Type systems are good for detecting errors.
▶ Types systems can be use for improving efficiency.
▶ Types are useful for documentation (reading programs).

Types 28/59

Types
Programming languages

A type system is a tractable syntactic method for proving the absence of certain
program behaviors by classifying phrases according to the kinds of values they compute.
(Pierce [2002, p. 1])

▶ Type systems can be use for reasoning (internal o externally) about programs.

▶ In general, types are compositional.
▶ Types systems are conservative.
▶ Type systems can be use for facilitating large-scale software composition (handling

higher-level modularity and user-defined abstractions).
▶ Type systems are good for detecting errors.
▶ Types systems can be use for improving efficiency.
▶ Types are useful for documentation (reading programs).

Types 29/59

Types
Programming languages

A type system is a tractable syntactic method for proving the absence of certain
program behaviors by classifying phrases according to the kinds of values they compute.
(Pierce [2002, p. 1])

▶ Type systems can be use for reasoning (internal o externally) about programs.
▶ In general, types are compositional.

▶ Types systems are conservative.
▶ Type systems can be use for facilitating large-scale software composition (handling

higher-level modularity and user-defined abstractions).
▶ Type systems are good for detecting errors.
▶ Types systems can be use for improving efficiency.
▶ Types are useful for documentation (reading programs).

Types 30/59

Types
Programming languages

A type system is a tractable syntactic method for proving the absence of certain
program behaviors by classifying phrases according to the kinds of values they compute.
(Pierce [2002, p. 1])

▶ Type systems can be use for reasoning (internal o externally) about programs.
▶ In general, types are compositional.
▶ Types systems are conservative.

▶ Type systems can be use for facilitating large-scale software composition (handling
higher-level modularity and user-defined abstractions).

▶ Type systems are good for detecting errors.
▶ Types systems can be use for improving efficiency.
▶ Types are useful for documentation (reading programs).

Types 31/59

Types
Programming languages

A type system is a tractable syntactic method for proving the absence of certain
program behaviors by classifying phrases according to the kinds of values they compute.
(Pierce [2002, p. 1])

▶ Type systems can be use for reasoning (internal o externally) about programs.
▶ In general, types are compositional.
▶ Types systems are conservative.
▶ Type systems can be use for facilitating large-scale software composition (handling

higher-level modularity and user-defined abstractions).

▶ Type systems are good for detecting errors.
▶ Types systems can be use for improving efficiency.
▶ Types are useful for documentation (reading programs).

Types 32/59

Types
Programming languages

A type system is a tractable syntactic method for proving the absence of certain
program behaviors by classifying phrases according to the kinds of values they compute.
(Pierce [2002, p. 1])

▶ Type systems can be use for reasoning (internal o externally) about programs.
▶ In general, types are compositional.
▶ Types systems are conservative.
▶ Type systems can be use for facilitating large-scale software composition (handling

higher-level modularity and user-defined abstractions).
▶ Type systems are good for detecting errors.

▶ Types systems can be use for improving efficiency.
▶ Types are useful for documentation (reading programs).

Types 33/59

Types
Programming languages

A type system is a tractable syntactic method for proving the absence of certain
program behaviors by classifying phrases according to the kinds of values they compute.
(Pierce [2002, p. 1])

▶ Type systems can be use for reasoning (internal o externally) about programs.
▶ In general, types are compositional.
▶ Types systems are conservative.
▶ Type systems can be use for facilitating large-scale software composition (handling

higher-level modularity and user-defined abstractions).
▶ Type systems are good for detecting errors.
▶ Types systems can be use for improving efficiency.

▶ Types are useful for documentation (reading programs).

Types 34/59

Types
Programming languages

A type system is a tractable syntactic method for proving the absence of certain
program behaviors by classifying phrases according to the kinds of values they compute.
(Pierce [2002, p. 1])

▶ Type systems can be use for reasoning (internal o externally) about programs.
▶ In general, types are compositional.
▶ Types systems are conservative.
▶ Type systems can be use for facilitating large-scale software composition (handling

higher-level modularity and user-defined abstractions).
▶ Type systems are good for detecting errors.
▶ Types systems can be use for improving efficiency.
▶ Types are useful for documentation (reading programs).

Types 35/59

Types
Example
Examples of types in programming languages include integers, booleans, floating point num-
bers, characters, strings, lists, Cartesian products (tuples), discriminated unions, sets, functions,
recursive/inductive types and user-defined types.

Types 36/59

Types
Type checking: static typing vs dynamic typing†

†Figure from en.hexlet.io/courses/intro_to_programming/lessons/types/theory_unit.
Types 37/59

en.hexlet.io/courses/intro_to_programming/lessons/types/theory_unit

Types
The static programmer says: The dynamic programmer says:

‘Static typing catches bugs with the compiler and
keeps you out of trouble.’

‘Static typing only catches some bugs, and you
can’t trust the compiler to do your testing.’

‘Static languages are easier to read because
they’re more explicit about what the code does.’

‘Dynamic languages are easier to read because
you write less code.’

‘At least I know that the code compiles.’ ‘Just because the code compiles doesn’t mean it
runs.’

‘I trust the static typing to make sure my team
writes good code.’

‘The compiler doesn’t stop you from writing bad
code.’

‘Debugging an unknown object is impossible.’ ‘Debugging overly complex object hierarchies is
unbearable.’

‘Compiler bugs happen at midmorning in my of-
fice; runtime bugs happen at midnight for my cus-
tomers.’

‘There’s no replacement for testing, and unit tests
find more issues than the compiler ever could.’

(From www.smashingmagazine.com/2013/04/introduction-to-programming-type-systems).
Types 38/59

www.smashingmagazine.com/2013/04/introduction-to-programming-type-systems

Types
Example
Dynamically typed: JavaScript, PHP and Python
Statically typed: C, C++, C#, Haskell, Java and Standard ML

Types 39/59

Types
The propositions-as-types principle (Curry-Howard correspondence)

Wadler [2015] introduces correspondence’s levels by:

(i) Propositions as types

‘For each proposition in the logic there is a corresponding type in the programming
language—and vice versa.’

(ii) Proofs as programs

‘For each proof of a given proposition, there is a program of the corresponding type—and
vice versa.’

(iii) Simplification of proofs as evaluation of programs

‘For each way to simplify a proof there is a corresponding way to evaluate a program—and
vice versa.’

Types 40/59

Types
The propositions-as-types principle (Curry-Howard correspondence)
Wadler [2015] introduces correspondence’s levels by:

(i) Propositions as types

‘For each proposition in the logic there is a corresponding type in the programming
language—and vice versa.’

(ii) Proofs as programs

‘For each proof of a given proposition, there is a program of the corresponding type—and
vice versa.’

(iii) Simplification of proofs as evaluation of programs

‘For each way to simplify a proof there is a corresponding way to evaluate a program—and
vice versa.’

Types 41/59

Types
The propositions-as-types principle (Curry-Howard correspondence)
Wadler [2015] introduces correspondence’s levels by:

(i) Propositions as types

‘For each proposition in the logic there is a corresponding type in the programming
language—and vice versa.’

(ii) Proofs as programs

‘For each proof of a given proposition, there is a program of the corresponding type—and
vice versa.’

(iii) Simplification of proofs as evaluation of programs

‘For each way to simplify a proof there is a corresponding way to evaluate a program—and
vice versa.’

Types 42/59

Types
The propositions-as-types principle (Curry-Howard correspondence)
Wadler [2015] introduces correspondence’s levels by:

(i) Propositions as types

‘For each proposition in the logic there is a corresponding type in the programming
language—and vice versa.’

(ii) Proofs as programs

‘For each proof of a given proposition, there is a program of the corresponding type—and
vice versa.’

(iii) Simplification of proofs as evaluation of programs

‘For each way to simplify a proof there is a corresponding way to evaluate a program—and
vice versa.’

Types 43/59

Types
Example
Example for the propositions-as-types principle.

(implication) A ⊃ B σ → τ (function type)
(conjunction) A ∧ B σ × τ (product type)
(disjunction) A ∨ B σ + τ (sum type)
(bottom) ⊥ N0 (empty type)
(top) ⊤ N1 (unit type)

Types 44/59

Types
Homotopy type theory
See [Gonthier 2022, min 44:05].

Types 45/59

Types
Lifted sets

Let A be a set. The lifted set A⊥ is the poset with least element (bottom) ⊥ and whose
elements A ∪ {⊥} are ordered by

x ⊑ y iff x = ⊥ or x = y.

Types 46/59

Types
Lifted sets
Let A be a set. The lifted set A⊥ is the poset with least element (bottom) ⊥ and whose
elements A ∪ {⊥} are ordered by

x ⊑ y iff x = ⊥ or x = y.

Types 47/59

Types
Example
The lifted Booleans B⊥.

⊥

False True

Types 48/59

Types
Example
The lifted natural numbers N⊥.

⊥

. . .210 n n + 1 . . .

.

Types 49/59

Types
Haskell’s types
Haskell’s types are lifted and lazy [Yang 2010].

Types 50/59

Types
Example
Haskell’s lazy natural numbers where Succ ⊥ ≠ ⊥ [Escardó 1993].

data Nat = Zero
| Succ Nat . .

.

0

0 1

1 2

2 inf
0 = ⊥,

n + 1 = Succ n,

inf =
⋃

n∈ω

n.

Types 51/59

Presentations

Presentations
Some possible topics

▶ Representation of number-theoretic functions in category theory [Lambek and P. J. Scott
1994, Part III].

▶ The categorical abstract machine [Cousineau, Curien and Mauny 1985, 1987].
▶ A categorical programming language [Hagino 1987a,b].
▶ Categorification

▶ Introduction via examples [Lauda and Sussan 2022].
▶ The graph minor category [Ramos 2022].

▶ Sets, types, categories and foundations of mathematics [Awodey 2011].

Presentations 53/59

References

References
Abramsky, S. and Tzevelekos, N. (2011). Introduction to Categories and Categorical Logic. In: New
Structures for Physics. Ed. by Coecke, B. Vol. 813. Lecture Notes in Physics. Springer, pp. 3–94.
doi: 10.1007/978-3-642-12821-9_1 (cit. on pp. 3, 8).
Abramsky, S. (1986). Introduction. In: Category Theory and Computer Programming. Ed. by Pitt,
D., Abramsky, S., Poigné, A. and Rydeheard, D. Vol. 240. Lecture Notes in Computer Science.
Springer-Verlag, pp. 3–5. doi: 10.1007/3-540-17162-2 (cit. on pp. 13, 14).
Awodey, S. [2006] (2010). Category Theory. 2nd ed. Vol. 52. Oxford Logic Guides. Oxford University
Press (cit. on p. 10).
— (2011). From Sets to Types, to Categories, to Sets. In: Foundational Theories of Classical
and Constructive Mathematics. Ed. by Sommaruga, G. Vol. 76. The Western Ontario Series in
Philosophy of Science. Springer, pp. 113–125. doi: 10.1007/978-94-007-0431-2_5 (cit. on
p. 53).
Backus, J. (1978). Can Programming Be Liberated from the von Neumann style? A Functional
Style and its Algebra of Programs. Communications of the ACM 21.8, pp. 613–641. doi: 10.1145/
359576.359579 (cit. on pp. 13, 14).

References 55/59

https://doi.org/10.1007/978-3-642-12821-9_1
https://doi.org/10.1007/3-540-17162-2
https://doi.org/10.1007/978-94-007-0431-2_5
https://doi.org/10.1145/359576.359579
https://doi.org/10.1145/359576.359579

References
Cousineau, G., Curien, P.-L. and Mauny, M. (1985). The Categorical Abstract Machine. In: Func-
tional Programming Languages and Computer Architecture. Ed. by Jouannaud, J.-P. Vol. 201.
Lecture Notes in Computer Science. Springer, pp. 50–64. doi: 10.1007/3-540-15975-4_29
(cit. on p. 53).
— (1987). The Categorical Abstract Machine. Science of Computer Programming 8.2, pp. 173–
202. doi: 10.1016/0167-6423(87)90020-7 (cit. on p. 53).
Escardó, M. H. (1993). On Lazy Natural Numbers with Applications to Computability Theory and
Functional Programming. SIGACT News 24.1, pp. 61–67. doi: 10.1145/152992.153008 (cit. on
p. 51).
Gonthier, G. (7th July 2022). Computer Proofs: Teaching Computers Mathematics, and Con-
versely. Conference in the International Congress of Mathematicians 2022. url: https://opade.
digital/days/2/sessions/-LF4j-pRKKgQBzQFnVfOQ (cit. on p. 45).
Hagino, T. (1987a). A Categorical Programming Language. PhD thesis. University of Edinburgh
(cit. on p. 53).

References 56/59

https://doi.org/10.1007/3-540-15975-4_29
https://doi.org/10.1016/0167-6423(87)90020-7
https://doi.org/10.1145/152992.153008
https://opade.digital/days/2/sessions/-LF4j-pRKKgQBzQFnVfOQ
https://opade.digital/days/2/sessions/-LF4j-pRKKgQBzQFnVfOQ

References
Hagino, T. (1987b). A Typed Lambda Calculus with Categorical Type Constructors. In: Category
Theory and Computer Programming. Ed. by Pitt David H. Poigné, A. and Rydeheard, D. E. Vol. 283.
Lecture Notes in Computer Science. Springer, pp. 140–157. doi: 10.1007/3-540-18508-9_24
(cit. on p. 53).
Lambek, J. and Scott, P. J. (1994). Introduction to Higher Order Categorical Logic. Cambridge
University Press (cit. on p. 53).
Lauda, A. D. and Sussan, J. (2022). An Invitation to Categorification. Notices of the AMS 69.1,
pp. 11–21. doi: 10.1090/noti2399 (cit. on p. 53).
Marquis, J.-P. (2021). Category Theory. In: The Stanford Encyclopedia of Philosophy. Ed. by Zalta,
E. N. Fall 2021. Metaphysics Research Lab, Stanford University. url: https://plato.stanford.
edu/archives/fall2021/entries/category-theory/ (visited on 16/06/2022) (cit. on p. 12).
Merzcbach, U. C. and Boyer, C. B. [1968] (2011). A History of Mathematics. 3rd ed. John Wiley
& Sons (cit. on p. 9).
Milewski, B. (2019). Category Theory for Programmers. Version 32. 17 May 2022. url: https:
//github.com/hmemcpy/milewski-ctfp-pdf (cit. on pp. 22, 23).
Mitchell, J. C. (1996). Foundations for Programming Languages. MIT Press (cit. on p. 20).

References 57/59

https://doi.org/10.1007/3-540-18508-9_24
https://doi.org/10.1090/noti2399
https://plato.stanford.edu/archives/fall2021/entries/category-theory/
https://plato.stanford.edu/archives/fall2021/entries/category-theory/
https://github.com/hmemcpy/milewski-ctfp-pdf
https://github.com/hmemcpy/milewski-ctfp-pdf

References
Pierce, B. C. (2002). Types and Programming Languages. MIT Press (cit. on pp. 28–35).
Pitt, D., Abramsky, S., Poigné, A. and Rydeheard, D., eds. (1986). Category Theory and Computer
Programming. Vol. 240. Lecture Notes in Computer Science. Springer-Verlag. doi: 10.1007/3-
540-17162-2 (cit. on pp. 13, 14).
Plotkin, G. (1992). Post-graduate Lecture Notes in Advance Domain Theory (Incorporating the
“Pisa Notes”). Electronic edition prepared by Yugo Kashiwagi and Hidetaka Kondoh. url: http:
//homepages.inf.ed.ac.uk/gdp/ (visited on 29/07/2014) (cit. on p. 20).
Poigné, A. (1992). Basic Category Theory. In: Handbook of Logic in Computer Science. Volume 1.
Ed. by Abramsky, S., Gabbay, D. M. and Maibaum, T. S. E. Clarendon Press, pp. 413–640 (cit. on
pp. 13, 14).
Ramos, E. (2022). The Graph Minor Theorem Meets Algebra. Notices of the AMS 69.8, pp. 1297–
1305. doi: 10.1090/noti2522 (cit. on p. 53).
Russell, B. [1903] (1938). The Principles of Mathematics. 2nd ed. W. W. Norton & Company, Inc
(cit. on pp. 25–27).
Scott, D. S. (1980). Relating Theories of the Lambda Calculus. In: To H. B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism. Academic Press (cit. on pp. 11, 13, 14).

References 58/59

https://doi.org/10.1007/3-540-17162-2
https://doi.org/10.1007/3-540-17162-2
http://homepages.inf.ed.ac.uk/gdp/
http://homepages.inf.ed.ac.uk/gdp/
https://doi.org/10.1090/noti2522

References
Shustek, L. (2022). An Interview with Dana Scott. Communications of the ACM 45.8, pp. 25–29.
doi: 10.1145/3544551 (cit. on p. 19).
Wadler, P. (2015). Propositions as Types. Communications of the ACM 58.12, pp. 75–84. doi:
10.1145/2699407 (cit. on pp. 40–43).
Yang, E. Z. (2010). ezyang’s blog. Hussling Haskell Types into Hasse Diagrams. url: http :
//blog.ezyang.com/2010/12/hussling-haskell-types-into-hasse-diagrams/ (cit. on
p. 50).

References 59/59

https://doi.org/10.1145/3544551
https://doi.org/10.1145/2699407
http://blog.ezyang.com/2010/12/hussling-haskell-types-into-hasse-diagrams/
http://blog.ezyang.com/2010/12/hussling-haskell-types-into-hasse-diagrams/

	Pedagogical Pact
	About Category Theory
	An Application: Semantics of Programming Languages
	Reading and Exercises
	Types
	Presentations
	References

