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Preliminaries

Convention
The number assigned to chapters, examples, exercises, figures, pages, sections, and theorems

on these slides correspond to the numbers assigned in the textbook [Abramsky and Tzevelekos
2011].
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Initial and Terminal Objects



Initial and Terminal Objects

Introduction
We shall introduce abstract characterisations of the empty set and the one-element sets in set
theory.
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Initial and Terminal Objects

Definition
Let C be a category. An object 0 in C is initial iff for any object A there is a unique arrow

(universal property)
0— A
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Initial and Terminal Objects

Definition
Let C be a category. An object 0 in C is initial iff object A there is a arrow
(universal property)

0— A
Definition
Let C be a category. An object 1 in C is terminal iff object A there is a arrow
(universal property)

A— 1
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Initial and Terminal Objects

Remark
Initial and terminal objects are dual notions.

Initial and Terminal Objects 8/62



Initial and Terminal Objects

Example

P> In Set, the empty set is an initial object and any one-element set is a terminal object.
» In Pos, the poset (), ?) is an initial object and the poset ({*}, {(x,*)}) is a terminal object.

» In Top, the topological space ((),{(0}) is an initial object and the topological space
({*},{0,{*}}) is a terminal object.
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Initial and Terminal Objects

Example
P> In Set, the empty set is an initial object and any one-element set is a terminal object.
» In Pos, the poset (), ?) is an initial object and the poset ({*}, {(x,*)}) is a terminal object.

» In Top, the topological space ((),{(0}) is an initial object and the topological space
({*},{0,{*}}) is a terminal object.

Exercise 1
Verify the initial and terminal objects in the previous example. In each case, identify the canonical

arrows (Exercise 18).
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Initial and Terminal Objects

Exercise 2
For the category Rel, identify the initial and terminal objects, and the canonical arrows (Exer-
cise 19).

Exercise 3
Suppose that a monoid, viewed as a category, has either an initial or a terminal object. What
must the monoid be? (Exercise 20).
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Initial and Terminal Objects

Example
In a poset, seen as a category,

(i) an object is initial iff it is the least element,

(ii) an object is terminal iff it is the greatest element.
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Initial and Terminal Objects

Example
In a poset, seen as a category,
(i) an object is initial iff it is the least element,

(ii) an object is terminal iff it is the greatest element.

Question
Does a category need to have either an initial object or a terminal object?
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Initial and Terminal Objects

Example
In a poset, seen as a category,
(i) an object is initial iff it is the least element,

(ii) an object is terminal iff it is the greatest element.

Question
Does a category need to have either an initial object or a terminal object?

Answer: No. The poset (Z,<), seen as a category, has neither.
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Initial and Terminal Objects

Example
For Hask, the Void data type' is an initial object.

data Void
absurd :: Void -> a
absurd a = case a of {}

tFrom the module Data.Void of the base library.
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Initial and Terminal Objects

Example

For Hask, the Unit data type is a terminal object.

data Unit = MkUnit

t :: a -> Unit
t _ = MkUnit

Initial and Terminal Objects
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Initial and Terminal Objects

Example
For Hask, the Unit data type is a terminal object.

data Unit = MkUnit

t :: a -> Unit
t _ = MkUnit

The terminal object is built-in as () whose unique term is (), thatis, O :: Q.
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Initial and Terminal Objects

Theorem (Proposition 21)
Initial objects are unique up to isomorphism, that is, if 0 and 0’ are initial objects in a category C
then there exists a unique isomorphism 0 — (/.
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Initial and Terminal Objects

Proof.
Let 0 and 0’ be initial objects in a category C. Because 0 and 0 are initial objects we have that

the following diagram commutes:
0———0
idy jJoi=1idg
ido J 70 ] = ido/
00— 0

That is, there is an unique isomorphism 7 : 0 =0,
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Initial and Terminal Objects

Theorem
Terminal objects are unique up to isomorphism.

Exercise 4
Prove the previous theorem.
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Products

Introduction
We shall introduce abstract characterisations of products (e.g. Cartesian products of sets and
direct products of groups).
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Binary Products

Example (Cartesian product in set theory)

(i) Let X and Y be sets. The Cartesian product of X and Y is defined by
XxY:={(z,y) |lzreXNyeY},
where the ordered pair (z,y) can be defined by
(x,y) :={{z,y},y} (Kuratowski's definition)

and it satisfies that
(x,y) = (2,y)) iff x=2"andy=1"

(continued on next slide)
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Binary Products

Example (Cartesian product in set theory (continuation))

(i) Two coordinate projections on X x Y are defined by

m: X XY = X :=(x,y) = x,
m: X XY = X = (x,y) = vy,

where
c=(memc), forallce X xY.

(continued on next slide)
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Binary Products

Example (Cartesian product in set theory (continuation))

(iii) Let f: Z — X and g: Z — Y. The pair f and g function is defined by

(f,9): Z > XxY: =z (fz,92).

(continued on next slide)
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Binary Products

Example (Cartesian product in set theory (continuation))

(iv) We state the Cartesian product properties by saying that the following diagram commutes.

v T
X ! XxY 2 Y

PN

<7r1 o(x,y) = a:)
T (@) Y Ty o (T, y) =y
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Binary Products

Definition

Let A; and Ay be objects in a category C. A binary product of A; and A is a triple (P, 7, m2),
where P is an object in C, denoted A; x As, and 71 and 75 are two arrows

A1<7T—1A1 XAQ&AQ,
such that object B and arrows
A - BB 4,

there exists an arrow
(fi,f2) : B = Ay x Ay

such that the following diagram commutes (universal property):

Products

(continued on next slide)
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Binary Products

Definition (continuation)

T T2
Aq Ar x Ay Ay

A

N o) 7T10<f1,f2>=f1>
fi D <m o (f1, f2) = fo
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Binary Products

Example
» In Set, products are the Cartesian products.
» In Pos, products are Cartesian products with the product order."

» In Top, products are Cartesian products with the product topology.

tThe textbook uses ‘pointwise order’ instead of ‘product order".
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Binary Products

Example

» In Set, products are the Cartesian products.
» In Pos, products are Cartesian products with the product order."

» In Top, products are Cartesian products with the product topology.

Exercise 5
Verify the previous claims (Exercise 19).

tThe textbook uses ‘pointwise order’ instead of ‘product order’.

Products
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Binary Products

Definition
A category C has binary products iff each pair of objects of C have a binary product.
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Binary Products

Example
Since it possible to define the Cartesian product between any pair of sets, the category Set has
binary products.
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Binary Products

Example
Since it possible to define the Cartesian product between any pair of sets, the category Set has
binary products.

Example
In a poset, seen as a category, products are (binary) greatest lower bounds (meets). This
category has not binary products.
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Binary Products

Exercise 6
Prove Proposition 27.

Exercise 7
Prove Proposition 28.
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Ternary Products

Definition
Let A1, As and A3 be objects in a category C. A ternary product of A, A and A3 is a
quadruple

(P77T177r2a7‘—3)7

where P is an object in C, denoted A x Ay x As, and 71, w9, w3 are arrows from A; x Ay X As
to Ai, Ao, A3, respectively, such that object B and arrows fi, fo, f3 from B to
Aq, Ay, As, respectively, there exists an arrow

(1, f2, f3) : B — A1 x Ay x A3

such that the following diagram commutes (universal property):

(continued on next slide)
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Ternary Products

Definition (continuation)

31 ., .7 :
B <f1j2 f3> """""" > Al X AQ X A3

f2 T2

roducts

|

T © <f17f27f3> = fl
w0 {f1, f2, f3) = fo
w30 {f1, f2, f3) = f3

|
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Nullary Products

Remark
By removing the objects A; (which also remove the projections 7; and the equations
m; o (fi) = fi) from the binary (or ternary) products, we get the nullary products.
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Nullary Products

Remark
By removing the objects A; (which also remove the projections 7; and the equations

m; o (fi) = fi) from the binary (or ternary) products, we get the nullary products.

Definition
A nullary product in a category C is an object P, such that object B, thereis a
arrow B — P (universal property).
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Nullary Products

Remark
By removing the objects A; (which also remove the projections 7; and the equations
m; o (fi) = fi) from the binary (or ternary) products, we get the nullary products.

Definition
A nullary product in a category C is an object P, such that object B, thereis a
arrow B — P (universal property).

Remark
Note that the above object P is just a terminal object of C.
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Nullary Products

Exercise 8
What is the product of the empty family? (Exercise 29)
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Finite Products

Definition
A category has finite products iff the category has products for all n € N.
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Finite Products

Exercise 9
Show that if a category has binary and nullary products then it has finite products (Exercise 30).
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General Products

Introduction
We shall generalise finite products to products of arbitrary objects.
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General Products

Example (Cartesian product of a family of sets)

(i) Let {X;}icr be a family of sets indexed by I. The Cartesian product of the family of
sets { X }icy is defined by

H&:{ﬂI%UXi

el i€l

hmMeLﬂe&}
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General Products

Example (Cartesian product of a family of sets)

(i) Let {X;}icr be a family of sets indexed by I. The Cartesian product of the family of
sets { X }icy is defined by

H&:{ﬂI%UXi

el i€l

hmMeLﬂe&}

(ii) For i € I, the ith-coordinate projection map is defined by

e (HX]-) — X, =f— fi.

jeJ
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General Products

Definition
Let {A;}icr be a family of objects in a category C. A product for the family {A;};cs is an
object [[;c; Ai and arrows

T . <H Az) — A,L
i€l
such that object B and arrows
fq' :B— Az
there exists an arrow
(fi)ier : B = [ As
i€l
(continued on next slide)
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General Products

Definition (continuation)

such that, for i € I, the following diagram commutes (universal property):

A fi)ier T A

i€l

B

(Wz' o (fi)ier = fi)
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Coproducts

Introduction
We shall introduce abstract characterisations of disjoint unions (also called disjoint sums).
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Binary Coproducts

Example (Disjoint union in set theory)

(i) Let X and Y be sets. The disjoint union of X and Y is defined by

X+V:={1} x X)U({2} x Y)
={(La)|ze X U{(2y) |beY ).

(continued on next slide)
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Binary Coproducts

Example (Disjoint union in set theory (continuation))

(i) Two injections for X + Y are defined by

in: X —>X+4+Y: =z (1,2),
in:Y - X+Y: =y~ (2,y).

(continued on next slide)
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Binary Coproducts

Example (Disjoint union in set theory (continuation))

(iii) Let f: X - Z and g: Y — Z. The case f or g function is defined by

[fogl: X+Y —=Z
[f,9] (1, 2) = fua,
£, 9] (2,y) =g

(continued on next slide)
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Binary Coproducts

Example (Disjoint union set theory (continuation))

(iv) We state the disjoint union properties by saying that the following diagram commutes.

in1 in2

X X+Y Y

([m, yloing = w)
y [z,y]oiny =y
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Binary Coproducts

Definition
Let A; and As be objects in a category C. A binary coproduct of A; and A, is a triple
(P,iny,in2), where P is an object in C, denoted A; + Ao, and in; and in; are two arrows

ing

Ay ﬂ)‘41%—142 —— Ao,
such that object B and arrows
AL B A,

there exists an arrow
[f1, 2] 1 Av+ A2 — B
such that the following diagram commutes (universal property):

(continued on next slide)
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Binary Coproducts

Definition (continuation)

in1 in2

A A+ Ay As

<[f1, fa]oing = f1>
/ ANlf, fo [f1, fa] oing = fo

o <
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Binary Coproducts

Example

P> In Set, disjoint unions are binary coproducts.
» In Pos, disjoint unions are binary coproducts.

» In Top, topological disjoint unions are binary coproducts.
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Binary Coproducts

Example
P> In Set, disjoint unions are binary coproducts.
» In Pos, disjoint unions are binary coproducts.

» In Top, topological disjoint unions are binary coproducts.

Exercise 10
Verify the previous claims (Exercise 33).
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Binary Coproducts

Example
In a poset, seen as a category, binary coproducts are (binary) least upper bounds (joins).
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Binary Coproducts

Example
In a poset, seen as a category, binary coproducts are (binary) least upper bounds (joins).

Remark
The previous example show that, a difference of the disjoint union in set theory, the binary

coproduct between any pair of objects of a category may not exist.
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Binary Coproducts

Duality
Binary products and binary co-products are dual notions.

A1<—A1><A24>A2 A1—>A1+A2<7A2

NN
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