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Preliminaries

Convention
The number assigned to chapters, examples, exercises, figures, pages, sections, and theorems

on these slides correspond to the numbers assigned in the textbook [Abramsky and Tzevelekos
2011].
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Monoids

Definition
Let M be a set and let (—) - (—) be a binary relation on M and 1 € M. The structure (M, -, 1)
is a monoid iff it satisfies

VaVyVz((x - y) -z =z (y - 2)) (associativity)
Ve(x-1l=2=1-x) (identity)
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Monoids

Example
The structure (N, +,0) is a monoid.
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Free Monoid

Definition
Let ¥ be an alphabet (a set), let X* be the set of strings over ¥ including the empty string &,
and let (—) - (—) be the concatenation of strings. Then (¥*,-,¢) is the free monoid on the

set Y.
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Monoid Homomorphisms

Definition
A homomorphism between monoids is a map between the domains of the monoids that pre-

serves the monoid operation and the identity element.
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Monoid Homomorphisms

Definition
A homomorphism between monoids is a map between the domains of the monoids that pre-
serves the monoid operation and the identity element.

Let (M,-,1,7) and (N, *,1x) be two monoids. A homomorphism from (M, -, 1) to (N, *,1x)
is a function h : M — N such that for all z,y in M:

h(z-y)=hzxhy,
h(1p) = 1n.
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Groups

Definition
Let G be a set, (—) - (—) be a binary relation on G and 1 € G. The structure (G,-,1) is a
group iff it satisfies

VaVyVz((x - y) -z =z (y - 2)) (associativity)
Ve(x-1l=2=1-2x) (identity)
Veda!(z -2’ =1=12"x) (inverse)
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Groups

Example
The structure (Z,+,0) is a group.
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Groups

Example
The structure (Z,+,0) is a group.

Example
The monoid (X%, -, ¢) is not a group.
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Direct Product

Definition
Let (G,*,1g) and (H,o,1p) be two groups. The direct product of G and H is the group
(G x H,-,(1g,15)) where

(=) (-):GxH—-GxH

(91, h1) - (92, ha) == (g1 * g2, h1 © ha).
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Direct Product

Definition
Let (G,*,1g) and (H,o,1p) be two groups. The direct product of G and H is the group
(G x H,-,(1g,15)) where

(=) (-):GxH—-GxH

(91, h1) - (92, h2) == (g1 * g2, h1 © h2).

Exercise 1
Show that the direct product of two groups is a group.
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Algebraic Structures

Definition
An algebraic structure on a set A # () is essentially a collection of n-ary operations on A [Birk-
hoff 1946, 1987].
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Algebraic Structures

Description
A homomorphism is a structure-preserving map between two algebraic structures.
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Algebraic Structures

Definition

A homomorphism ¢ between two algebraic structures is [Cohn 1981]:

>

vVVvyYvyy

a monomorphism if ¢ is an injection,

an epimorphism if ¢ is a surjection,

an endomorphism if ¢ is from an algebraic structure to itself,
an isomorphism if ¢ is a bijection,

an automorphism if ¢ is a bijective endomorphism.

Algebraic Structures
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Pre-orders

Definition
Let P be a set and let < be a binary relation on P. The relation =< is a pre-order (or quasi-
order) iff it satisfies

Vr(z < x) (reflexivity)
VaVyVz(z <y 2z =2 < 2) (transitivity)

The pair (P, =) is a pre-ordered set (or quasi-ordered set).
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Pre-orders

Example
The pair (N, <) is a pre-ordered set.
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Pre-orders

Example
The pair (N, <) is a pre-ordered set.

Example
The pair ({*},{(*,%)}) is a pre-ordered set.
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Pre-orders

Example
The pair (N, <) is a pre-ordered set.

Example
The pair ({*},{(*,%)}) is a pre-ordered set.

Question
Is the pair (0, () a pre-ordered set?
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Pre-orders

Example
The pair (N, <) is a pre-ordered set.

Example
The pair ({*},{(*,%)}) is a pre-ordered set.

Question
Is the pair (0, () a pre-ordered set?

Answer: Yes!
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Pre-orders

Definition
Let (S, <s) and (T, <7) be two pre-ordered sets. A homomorphism from (S, <g) to (T, =7)
is a function h : S — T such that, for all z,y € S,

r =gy implies hx =<prhy.
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Pre-orders

Definition
Let (S, <s) and (T, <7) be two pre-ordered sets. A homomorphism from (S, <g) to (T, =7)
is a function h : S — T such that, for all z,y € S,

r =gy implies hx =<prhy.

That is, a homomorphism from (S, <g) to (T, <r) is a monotone map h: S — T.
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Partial Orders

Definition
Let P be a set and let < be a binary relation on P. The relation < is a partial order iff it
satisfies

Va(zr < x) (reflexivity)
VaVylx <y 2z — x =1y) (anti-symmetry)
VaVyVz(x <y <Xz = x <X 2) (transitivity)

The pair (P, =) is a partially ordered set (or poset).
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Partial Orders

Example
The pre-ordered sets (N, <), (0,0) and ({*},{(x,*)}) are posets.
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Partial Orders

Question
Are pre-ordered sets which are not posets?
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Partial Orders

Question
Are pre-ordered sets which are not posets?

Answer: Yes! The figure shows an example.

P

-
a\/

b

Partial Orders 32/55



Partial Orders

Definition
Let (S,=g) and (7T, =r) be two posets. A homomorphism from (S, =<g) to (T, =r) is a
function h : S — T such that, for all x,y € 5,

r =gy implies hx =<prhy.
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Partial Orders

Definition
Let (S,=g) and (T, <7) be two posets. An order isomorphism from (S, <g) to (T, =r) is a
one-one correspondence h : S — T such that, for all z,y € 5,

r =gy iff hx =<phy.
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Partial Orders

Definition
Let (S,=g) and (T, =7) be two posets. The product of posets S and T is the poset (S x T, <)
where the product order < is defined by:

For all 1,20 € S and y1,y2 € T,

(x1,91) = (z2,92) iff x1 =g x2 and y1 21 2.
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Relational Structures

Definition
Let L be a signature of a relational structure consisting of function and relation symbols, and
let A and B be two L-structures. A homomorphism from A to B is a mapping h from the

domain of A to the domain of B such that!

(i) for each m-ary function symbol F'in L,
h(FA2 ... xp) = FB(hay) ... (hay),

(i) for each n-ary relation symbol R in L,

RA(ml, ..., Zy) implies RB(h T1,...,hay).

"From https://en.wikipedia.org/wiki/Homomorphism.

Relational Structures 37/55


https://en.wikipedia.org/wiki/Homomorphism

Topological Spaces



Topological Spaces

Definition

A topology on a set X is a collection T of subsets of X such that
(i) 0 and X are belong to T,

(i) the union of (finite or infinite) members of T belongs to T,

(iii) the intersection of finite members of T belongs to T.

The pair (X, T) is a topological space.
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Topological Spaces

Example
Let T be the set of all open intervals in R. The pair (R, T) is a topological space.
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Topological Spaces

Example

Let T be the set of all open intervals in R. The pair (R, T) is a topological space.

Example
Let P S be the power set of the set S. The pair (S,P S) is a topological space.
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Topological Spaces

Example
The pair (0,{0}) is a topological space.
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Topological Spaces

Example
The pair (0,{0}) is a topological space.

Example
The pair ({*},{0, {x}}) is a topological space.
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Topological Spaces

Definition
Let (X,Tx) and (Y, Ty) be topological spaces. A function f: X — Y is continuous iff for all
V € 1y, f_l(V) € Tx.
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Topological Spaces

Definition
Let (X, T) be topological space. A base (or basis) for T is a collection B C T such that every
open set is a union of elements of B.
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Topological Spaces

Definition
Let (X,tx) and (Y, Ty) be topological spaces. The product topological space of X and Y is

the topological space (X X Y, Txxy), where Txxy is the topology generated by the Cartesian
product Ux x Uy C X xY of opensets U, C X and Uy C Y.
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Axiomatic Category Theory

Remark
The following definition was adapted from [Mac Lane 1971].
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Axiomatic Category Theory

Remark

The following definition was adapted from [Mac Lane 1971].

Definition

Axiomatic Category Theory is the following two-sorted first-order theory with equality:

» The sorts of the theory are Obj() (objects), denoted by A, B,C, ..., and Ar() (arrows),
denoted by f,q,h,....

(continued on next slide)
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Axiomatic Category Theory

Definition (continuation)

» The undefined terms (language) of the theory are the function symbols

dom : (Ar(), Obj()) (domain),
cod : (Ar(), Obj()) (codomain),
id : (Obj(), Ar()) (identity arrow),

and the relation symbol

comp : (Ar(), Ar(), Ar()) (arrow composition).

(continued on next slide)

"The notation (s1, s2,...,5,) denotes a sort in many-sorted logic. See, for example, [Enderton 2001].
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Axiomatic Category Theory

Definition (continuation)
Notation. An arrow [ with dom f = A and cod f = B is written f : A — B.
Notation. The arrow id(A) is denoted id 4.

(continued on next slide)
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Axiomatic Category Theory

Definition (continuation)

» Non-logical axioms

(i) For all arrows f and ¢, if f : A— B and g : B — C then there exists an unique
arrow h : A — C, such as comp(f,g,h).

Notation. If comp(f,g,h) then the arrow h is denoted g o f.
(i) For all arrows f,gand h,if f: A— B, g: B— C and h: C — D then

ho(gof)=(hog)of.
(iii) For all object A, dom(idy) = cod(ids) = A.
(iv) For all arrow f, if f: A — B then

foida = f =idgo .
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Axiomatic Category Theory

Remark

In general, would be incorrect to define categories as models of the previous two-sorted theory
because, because set theory models would not include /arge categories.
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