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Preliminaries
Convention
The number assigned to chapters, examples, exercises, figures, pages, sections, and theorems
on these slides correspond to the numbers assigned in the textbook [Abramsky and Tzevelekos
2011].
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Monoids



Monoids
Definition
Let M be a set and let (−) · (−) be a binary relation on M and 1 ∈ M . The structure (M, ·, 1)
is a monoid iff it satisfies

∀x∀y∀z((x · y) · z = x · (y · z)) (associativity)
∀x(x · 1 = x = 1 · x) (identity)
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Monoids
Example
The structure (N, +, 0) is a monoid.
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Free Monoid
Definition
Let Σ be an alphabet (a set), let Σ∗ be the set of strings over Σ including the empty string ε,
and let (−) · (−) be the concatenation of strings. Then (Σ∗, ·, ε) is the free monoid on the
set Σ.
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Monoid Homomorphisms
Definition
A homomorphism between monoids is a map between the domains of the monoids that pre-
serves the monoid operation and the identity element.

Let (M, ·, 1M ) and (N, ∗, 1N ) be two monoids. A homomorphism from (M, ·, 1M ) to (N, ∗, 1N )
is a function h : M → N such that for all x, y in M :

h (x · y) = h x ∗ h y,

h (1M ) = 1N .
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Groups
Definition
Let G be a set, (−) · (−) be a binary relation on G and 1 ∈ G. The structure (G, ·, 1) is a
group iff it satisfies

∀x∀y∀z((x · y) · z = x · (y · z)) (associativity)
∀x(x · 1 = x = 1 · x) (identity)
∀x∃x′(x · x′ = 1 = x′ · x) (inverse)
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Groups
Example
The structure (Z, +, 0) is a group.

Example
The monoid (Σ∗, ·, ε) is not a group.
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Direct Product
Definition
Let (G, ∗, 1G) and (H, ⋄, 1H) be two groups. The direct product of G and H is the group
(G × H, ·, (1G, 1H)) where

(−) · (−) : G × H → G × H

(g1, h1) · (g2, h2) := (g1 ∗ g2, h1 ⋄ h2).

Exercise 1
Show that the direct product of two groups is a group.
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Algebraic Structures
Definition
An algebraic structure on a set A ̸= ∅ is essentially a collection of n-ary operations on A [Birk-
hoff 1946, 1987].
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Algebraic Structures
Description
A homomorphism is a structure-preserving map between two algebraic structures.
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Algebraic Structures
Definition
A homomorphism φ between two algebraic structures is [Cohn 1981]:
▶ a monomorphism if φ is an injection,
▶ an epimorphism if φ is a surjection,
▶ an endomorphism if φ is from an algebraic structure to itself,
▶ an isomorphism if φ is a bijection,
▶ an automorphism if φ is a bijective endomorphism.
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Pre-orders
Definition
Let P be a set and let ⪯ be a binary relation on P . The relation ⪯ is a pre-order (or quasi-
order) iff it satisfies

∀x(x ⪯ x) (reflexivity)
∀x∀y∀z(x ⪯ y ⪯ z ⇒ x ⪯ z) (transitivity)

The pair (P, ⪯) is a pre-ordered set (or quasi-ordered set).
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Pre-orders
Example
The pair (N, ≤) is a pre-ordered set.

Example
The pair ({∗}, {(∗, ∗)}) is a pre-ordered set.

Question
Is the pair (∅, ∅) a pre-ordered set?

Answer: Yes!
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Pre-orders
Definition
Let (S, ⪯S) and (T, ⪯T ) be two pre-ordered sets. A homomorphism from (S, ⪯S) to (T, ⪯T )
is a function h : S → T such that, for all x, y ∈ S,

x ⪯S y implies h x ⪯T h y.

That is, a homomorphism from (S, ⪯S) to (T, ⪯T ) is a monotone map h : S → T .
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Partial Orders
Definition
Let P be a set and let ⪯ be a binary relation on P . The relation ⪯ is a partial order iff it
satisfies

∀x(x ⪯ x) (reflexivity)
∀x∀y(x ⪯ y ⪯ x → x = y) (anti-symmetry)
∀x∀y∀z(x ⪯ y ⪯ z → x ⪯ z) (transitivity)

The pair (P, ⪯) is a partially ordered set (or poset).
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Partial Orders
Example
The pre-ordered sets (N, ≤), (∅, ∅) and ({∗}, {(∗, ∗)}) are posets.
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Partial Orders
Question
Are pre-ordered sets which are not posets?

Answer: Yes! The figure shows an example.

a b
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Partial Orders
Definition
Let (S, ⪯S) and (T, ⪯T ) be two posets. A homomorphism from (S, ⪯S) to (T, ⪯T ) is a
function h : S → T such that, for all x, y ∈ S,

x ⪯S y implies h x ⪯T h y.
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Partial Orders
Definition
Let (S, ⪯S) and (T, ⪯T ) be two posets. An order isomorphism from (S, ⪯S) to (T, ⪯T ) is a
one-one correspondence h : S → T such that, for all x, y ∈ S,

x ⪯S y iff h x ⪯T h y.
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Partial Orders
Definition
Let (S, ⪯S) and (T, ⪯T ) be two posets. The product of posets S and T is the poset (S×T, ⪯)
where the product order ⪯ is defined by:

For all x1, x2 ∈ S and y1, y2 ∈ T ,

(x1, y1) ⪯ (x2, y2) iff x1 ⪯S x2 and y1 ⪯T y2.
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Relational Structures
Definition
Let L be a signature of a relational structure consisting of function and relation symbols, and
let A and B be two L-structures. A homomorphism from A to B is a mapping h from the
domain of A to the domain of B such that†

(i) for each n-ary function symbol F in L,

h(F A x1 . . . xn) = F B (h x1) . . . (h xn),

(ii) for each n-ary relation symbol R in L,

RA(x1, . . . , xn) implies RB(h x1, . . . , h xn).

†From https://en.wikipedia.org/wiki/Homomorphism.
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Topological Spaces
Definition
A topology on a set X is a collection τ of subsets of X such that
(i) ∅ and X are belong to τ,
(ii) the union of (finite or infinite) members of τ belongs to τ,
(iii) the intersection of finite members of τ belongs to τ.

The pair (X, τ) is a topological space.
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Topological Spaces
Example
Let τ be the set of all open intervals in R. The pair (R, τ) is a topological space.

Example
Let P S be the power set of the set S. The pair (S, P S) is a topological space.

Topological Spaces 40/55



Topological Spaces
Example
Let τ be the set of all open intervals in R. The pair (R, τ) is a topological space.

Example
Let P S be the power set of the set S. The pair (S, P S) is a topological space.

Topological Spaces 41/55



Topological Spaces
Example
The pair (∅, {∅}) is a topological space.

Example
The pair ({∗}, {∅, {∗}}) is a topological space.
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Example
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Topological Spaces
Definition
Let (X, τX) and (Y, τY ) be topological spaces. A function f : X → Y is continuous iff for all
V ∈ τY , f−1(V ) ∈ τX .
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Topological Spaces
Definition
Let (X, τ) be topological space. A base (or basis) for τ is a collection B ⊂ τ such that every
open set is a union of elements of B.
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Topological Spaces
Definition
Let (X, τX) and (Y, τY ) be topological spaces. The product topological space of X and Y is
the topological space (X × Y, τX×Y ), where τX×Y is the topology generated by the Cartesian
product UX × UY ⊂ X × Y of open sets Ux ⊂ X and UY ⊆ Y .

Topological Spaces 46/55



Category Theory



Axiomatic Category Theory
Remark
The following definition was adapted from [Mac Lane 1971].

Definition
Axiomatic Category Theory is the following two-sorted first-order theory with equality:

▶ The sorts of the theory are Obj() (objects), denoted by A, B, C, . . ., and Ar() (arrows),
denoted by f, g, h, . . ..

(continued on next slide)

Category Theory 48/55



Axiomatic Category Theory
Remark
The following definition was adapted from [Mac Lane 1971].

Definition
Axiomatic Category Theory is the following two-sorted first-order theory with equality:

▶ The sorts of the theory are Obj() (objects), denoted by A, B, C, . . ., and Ar() (arrows),
denoted by f, g, h, . . ..

(continued on next slide)

Category Theory 49/55



Axiomatic Category Theory
Definition (continuation)
▶ The undefined terms (language) of the theory are the function symbols†

dom : ⟨Ar(), Obj()⟩ (domain),
cod : ⟨Ar(), Obj()⟩ (codomain),

id : ⟨Obj(), Ar()⟩ (identity arrow),

and the relation symbol

comp : ⟨Ar(), Ar(), Ar()⟩ (arrow composition).

(continued on next slide)
†The notation ⟨s1, s2, . . . , sn⟩ denotes a sort in many-sorted logic. See, for example, [Enderton 2001].
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Axiomatic Category Theory
Definition (continuation)
Notation. An arrow f with dom f = A and cod f = B is written f : A → B.

Notation. The arrow id(A) is denoted idA.

(continued on next slide)
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Axiomatic Category Theory
Definition (continuation)
▶ Non-logical axioms

(i) For all arrows f and g, if f : A → B and g : B → C then there exists an unique
arrow h : A → C, such as comp(f, g, h).

Notation. If comp(f, g, h) then the arrow h is denoted g ◦ f .

(ii) For all arrows f, g and h, if f : A → B, g : B → C and h : C → D then

h ◦ (g ◦ f) = (h ◦ g) ◦ f.

(iii) For all object A, dom(idA) = cod(idA) = A.

(iv) For all arrow f , if f : A → B then

f ◦ idA = f = idB ◦ f.
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Axiomatic Category Theory
Remark
In general, would be incorrect to define categories as models of the previous two-sorted theory
because, because set theory models would not include large categories.
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