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Preliminaries
Convention
The number assigned to chapters, examples, exercises, figures, pages, sections, and theorems
on these slides correspond to the numbers assigned in the textbook [Abramsky and Tzevelekos
2011].
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Introduction

The relation between recursive (inductive) data types and initial algebras is described by [Fong,
Milewski and Spivak 2020, p. 98] as:

The string of a recursive data type is a functor, and the knot is its initial algebra.
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Functors Associated with Recursive Data Types
Example (Natural numbers)
We define the recursive data type for natural numbers by

data Nat = Zero | Succ Nat

and we define the non-recursive associated functor by

data NatF a = ZeroF | SuccF a

instance Functor NatF where
fmap :: (a -> b) -> NatF a -> NatF b
fmap _ ZeroF = ZeroF
fmap f (SuccF n) = SuccF (f n)
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Functors Associated with Recursive Data Types
Example (Lists)
We define the recursive data type for lists by

data List c = Nil | Cons c (List c)

and we define the non-recursive associated functor by

data ListF c a = NilF | ConsF c a

instance Functor (ListF c) where
fmap :: (a -> b) -> ListF c a -> ListF c b
fmap _ NilF = NilF
fmap f (ConsF x y) = ConsF x (f y)
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F -Algebras
Definition
Let F : C → C be an endofunctor. An F -algebra (A, α) is [Fong, Milewski and Spivak 2020,
p. 104]
(i) an object A in Obj(C) (the carrier),
(ii) an arrow α : F0 A → A (the structure map).
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Algebra Arrows
Definition
Let F : C → C be an endofunctor and let (A, α) and (B, β) be two F -algebras. An algebra
arrow f : (A, α) → (B, β) is an arrow f : A → B in C such that the following diagram
commutes [Fong, Milewski and Spivak 2020, p. 104]:

F0 A

A

F0 B

B

F1 f

α β

f

(
f ◦ α = β ◦ (F1 f)

)
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